Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_5_a3, author = {V. M. Kaplitskii}, title = {A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains}, journal = {Izvestiya. Mathematics }, pages = {933--958}, publisher = {mathdoc}, volume = {75}, number = {5}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/} }
TY - JOUR AU - V. M. Kaplitskii TI - A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains JO - Izvestiya. Mathematics PY - 2011 SP - 933 EP - 958 VL - 75 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/ LA - en ID - IM2_2011_75_5_a3 ER -
V. M. Kaplitskii. A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 933-958. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/
[1] A. J. O'Connor, “Exponential decay of bound state wave functions”, Comm. Math. Phys., 32:4 (1973), 319–340 | DOI | MR
[2] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl
[3] Sh. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Math. Notes, 29, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl
[4] S. Nakamura, “Agmon-type exponential decay estimates for pseudodifferential operators”, J. Math. Sci. Univ. Tokyo, 5:4 (1998), 693–712 | MR | Zbl
[5] P. D. Hislop, “Exponential decay of two-body eigenfunctions: a review”, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), Electron. J. Differ. Equ. Conf., 4, Southwest Texas State Univ., San Marcos, TX, 2000, 265–288 | MR | Zbl
[6] I. C. Gohberg, I. A. Fel'dman, Convolution equations and projection methods for their solution, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl
[7] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI | MR | Zbl | Zbl
[8] S. Prössdorf, Einige Klassen singularer Gleichungen, Birkhäuser, Basel–Stuttgart, 1974 | MR | MR | Zbl | Zbl
[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl
[10] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, UMN, 12:2 (1957), 44–118 | MR | Zbl
[11] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, Dokl. AN SSSR, 78:4 (1951), 629–632 | MR | Zbl
[12] A. I. Komech, “Linear partial differential equations with constant coefficients”, Partial differential equations. II, Encyclopaedia Math. Sci., 31, Springer-Verlag, Berlin, 1994, 121–255 | MR | MR | Zbl | Zbl
[13] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975 | MR | MR | Zbl
[14] N. K. Karapetyants, S. G. Samko, Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1988 | MR | Zbl
[15] I. B. Simonenko, “Operators of convolution type in cones”, Math. USSR-Sb., 3:2 (1967), 279–293 | DOI | MR | Zbl
[16] G. S. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, Math. Appl., 523, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl
[17] V. G. Kravchenko, G. S. Litvinchuk, Introduction to the theory of singular integral operators with shift, Math. Appl., 289, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl