A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 933-958
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a method for obtaining estimates at infinity for eigenfunctions
of integral operators of certain classes in unbounded domains
of $\mathbb{R}^n$. We consider integral operators $K$ whose kernels
$k(x,y)$ can be written in the form $k(x,y)=a(x)k_0(x,y)b(y)$,
$(x,y)\in\Omega\times\Omega$, where
$|k_0(x,y)|\le\theta(x-y)e^{-S(x-y)}$ for some functions $\theta$ and $S$
satisfying certain natural additional conditions. We show that if the operator
$T=I-K$ with the corresponding kernel is Noetherian in $L_p(\Omega)$ and
the coefficients $a(x)$, $b(y)$ satisfy certain conditions, then the
solutions of $\varphi=K\varphi$ belong to the weighted space
$L_p(\Omega, e^{\delta S(x)})$. The method is applied to obtain
exponential estimates for eigenfunctions of $N$-particle Schrödinger
operators and estimates of decay at infinity for the solutions
of convolution-type equations with variable coefficients.
Keywords:
integral operator, Noetherian operator, eigenfunction, exponential decay,
discrete spectrum.
@article{IM2_2011_75_5_a3,
author = {V. M. Kaplitskii},
title = {A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains},
journal = {Izvestiya. Mathematics },
pages = {933--958},
publisher = {mathdoc},
volume = {75},
number = {5},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/}
}
TY - JOUR AU - V. M. Kaplitskii TI - A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains JO - Izvestiya. Mathematics PY - 2011 SP - 933 EP - 958 VL - 75 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/ LA - en ID - IM2_2011_75_5_a3 ER -
V. M. Kaplitskii. A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 933-958. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/