A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 933-958.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a method for obtaining estimates at infinity for eigenfunctions of integral operators of certain classes in unbounded domains of $\mathbb{R}^n$. We consider integral operators $K$ whose kernels $k(x,y)$ can be written in the form $k(x,y)=a(x)k_0(x,y)b(y)$, $(x,y)\in\Omega\times\Omega$, where $|k_0(x,y)|\le\theta(x-y)e^{-S(x-y)}$ for some functions $\theta$ and $S$ satisfying certain natural additional conditions. We show that if the operator $T=I-K$ with the corresponding kernel is Noetherian in $L_p(\Omega)$ and the coefficients $a(x)$$b(y)$ satisfy certain conditions, then the solutions of $\varphi=K\varphi$ belong to the weighted space $L_p(\Omega, e^{\delta S(x)})$. The method is applied to obtain exponential estimates for eigenfunctions of $N$-particle Schrödinger operators and estimates of decay at infinity for the solutions of convolution-type equations with variable coefficients.
Keywords: integral operator, Noetherian operator, eigenfunction, exponential decay, discrete spectrum.
@article{IM2_2011_75_5_a3,
     author = {V. M. Kaplitskii},
     title = {A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains},
     journal = {Izvestiya. Mathematics },
     pages = {933--958},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 933
EP  - 958
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/
LA  - en
ID  - IM2_2011_75_5_a3
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains
%J Izvestiya. Mathematics 
%D 2011
%P 933-958
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/
%G en
%F IM2_2011_75_5_a3
V. M. Kaplitskii. A method for estimating eigenfunctions of integral operators of certain classes in unbounded domains. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 933-958. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a3/

[1] A. J. O'Connor, “Exponential decay of bound state wave functions”, Comm. Math. Phys., 32:4 (1973), 319–340 | DOI | MR

[2] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl

[3] Sh. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Math. Notes, 29, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl

[4] S. Nakamura, “Agmon-type exponential decay estimates for pseudodifferential operators”, J. Math. Sci. Univ. Tokyo, 5:4 (1998), 693–712 | MR | Zbl

[5] P. D. Hislop, “Exponential decay of two-body eigenfunctions: a review”, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), Electron. J. Differ. Equ. Conf., 4, Southwest Texas State Univ., San Marcos, TX, 2000, 265–288 | MR | Zbl

[6] I. C. Gohberg, I. A. Fel'dman, Convolution equations and projection methods for their solution, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl

[7] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI | MR | Zbl | Zbl

[8] S. Prössdorf, Einige Klassen singularer Gleichungen, Birkhäuser, Basel–Stuttgart, 1974 | MR | MR | Zbl | Zbl

[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl

[10] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, UMN, 12:2 (1957), 44–118 | MR | Zbl

[11] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, Dokl. AN SSSR, 78:4 (1951), 629–632 | MR | Zbl

[12] A. I. Komech, “Linear partial differential equations with constant coefficients”, Partial differential equations. II, Encyclopaedia Math. Sci., 31, Springer-Verlag, Berlin, 1994, 121–255 | MR | MR | Zbl | Zbl

[13] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975 | MR | MR | Zbl

[14] N. K. Karapetyants, S. G. Samko, Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1988 | MR | Zbl

[15] I. B. Simonenko, “Operators of convolution type in cones”, Math. USSR-Sb., 3:2 (1967), 279–293 | DOI | MR | Zbl

[16] G. S. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, Math. Appl., 523, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[17] V. G. Kravchenko, G. S. Litvinchuk, Introduction to the theory of singular integral operators with shift, Math. Appl., 289, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl