Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 837-868

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results on exact asymptotics as $n\to\infty$ for the expectations $\mathsf{E}_a \exp\bigl\{-\theta\sum_{k=0}^{n-1} g(X_k)\bigr\}$ and probabilities $\mathsf{P}_a\bigl\{\frac{1}{n}\sum_{k=0}^{n-1}g(X_k)$, where $\{\xi_k\}_{k=1}^\infty $ is a sequence of independent identically Laplace-distributed random variables, $X_n=X_0+\sum_{k=1}^n \xi_k$, $n\geqslant 1$, is the corresponding random walk on $\mathbb{R}$, $g(x)$ is a positive continuous function satisfying certain conditions, and $d>0$, $\theta>0$, $a\in\mathbb{R}$ are fixed numbers. Our results are obtained using a new method which is developed in this paper: the Laplace method for the occupation time of discrete-time Markov chains. For $g(x)$ one can take $|x|^p$, $\log(|x|^p+1)$, $p>0$, $|x|\log(|x|+1)$, or $e^{\alpha |x|}-1$, $0\alpha1/2$, $x\in\mathbb{R}$, for example. We give a detailed treatment of the case when $g(x)=|x|$ using Bessel functions to make explicit calculations.
Keywords: large deviations, Laplace method, action functional, occupation time, Bessel function.
Mots-clés : Markov chains
@article{IM2_2011_75_4_a6,
     author = {V. R. Fatalov},
     title = {Exact asymptotics of probabilities of large deviations for {Markov} chains: the {Laplace} method},
     journal = {Izvestiya. Mathematics },
     pages = {837--868},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 837
EP  - 868
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/
LA  - en
ID  - IM2_2011_75_4_a6
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
%J Izvestiya. Mathematics 
%D 2011
%P 837-868
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/
%G en
%F IM2_2011_75_4_a6
V. R. Fatalov. Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 837-868. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/