Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 837-868
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove results on exact asymptotics as $n\to\infty$ for the expectations $\mathsf{E}_a \exp\bigl\{-\theta\sum_{k=0}^{n-1} g(X_k)\bigr\}$ and probabilities $\mathsf{P}_a\bigl\{\frac{1}{n}\sum_{k=0}^{n-1}g(X_k)$, where $\{\xi_k\}_{k=1}^\infty $ is a sequence of independent identically Laplace-distributed random variables, $X_n=X_0+\sum_{k=1}^n \xi_k$, $n\geqslant 1$, is the corresponding random walk on $\mathbb{R}$, $g(x)$ is a positive continuous function satisfying certain conditions, and $d>0$, $\theta>0$, $a\in\mathbb{R}$ are fixed numbers. Our results are obtained using a new method which is developed in this paper: the Laplace method for the occupation time of discrete-time Markov chains. For $g(x)$ one can take $|x|^p$, $\log(|x|^p+1)$, $p>0$, $|x|\log(|x|+1)$, or $e^{\alpha |x|}-1$, $0\alpha1/2$, $x\in\mathbb{R}$, for example. We give a detailed treatment of the case when $g(x)=|x|$ using Bessel functions to make explicit calculations.
Keywords:
large deviations, Laplace method, action functional,
occupation time, Bessel function.
Mots-clés : Markov chains
Mots-clés : Markov chains
@article{IM2_2011_75_4_a6,
author = {V. R. Fatalov},
title = {Exact asymptotics of probabilities of large deviations for {Markov} chains: the {Laplace} method},
journal = {Izvestiya. Mathematics },
pages = {837--868},
publisher = {mathdoc},
volume = {75},
number = {4},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/}
}
TY - JOUR AU - V. R. Fatalov TI - Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method JO - Izvestiya. Mathematics PY - 2011 SP - 837 EP - 868 VL - 75 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/ LA - en ID - IM2_2011_75_4_a6 ER -
V. R. Fatalov. Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 837-868. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a6/