Factorization semigroups and irreducible components of the Hurwitz space
Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 711-748.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a natural structure of a semigroup (isomorphic to the factorization semigroup of the identity in the symmetric group) on the set of irreducible components of the Hurwitz space of coverings of marked degree $d$ of $\mathbb P^1$ of fixed ramification types. We shall prove that this semigroup is finitely presented. We study the problem of when collections of ramification types uniquely determine the corresponding irreducible components of the Hurwitz space. In particular, we give a complete description of the set of irreducible components of the Hurwitz space of three-sheeted coverings of the projective line.
Keywords: semigroup, factorization of an element of a group, irreducible components of the Hurwitz space.
@article{IM2_2011_75_4_a3,
     author = {Vik. S. Kulikov},
     title = {Factorization semigroups and irreducible components of the {Hurwitz} space},
     journal = {Izvestiya. Mathematics },
     pages = {711--748},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a3/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Factorization semigroups and irreducible components of the Hurwitz space
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 711
EP  - 748
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a3/
LA  - en
ID  - IM2_2011_75_4_a3
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Factorization semigroups and irreducible components of the Hurwitz space
%J Izvestiya. Mathematics 
%D 2011
%P 711-748
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a3/
%G en
%F IM2_2011_75_4_a3
Vik. S. Kulikov. Factorization semigroups and irreducible components of the Hurwitz space. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 711-748. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a3/

[1] A. Clebsch, “Zur Theorie der Riemann'schen Fläche”, Math. Ann., 6:2 (1873), 216–230 | DOI | MR | Zbl

[2] A. Hurwitz, “Ueber Riemann'sche Flachen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–60 | DOI | MR | Zbl

[3] W. Fulton, “Hurwitz schemes and irreducibility of moduli of algebraic curves”, Ann. of Math. (2), 90:3 (1969), 542–575 | DOI | MR | Zbl

[4] M. Fried, R. Biggers, “Moduli spaces of covers and the Hurwitz monodromy group”, J. Reine Angew Math., 335 (1982), 87–121 | MR | Zbl

[5] M. D. Fried, H. Völklein, “The inverse Galois problem and rational points on moduli spaces”, Math. Ann., 290:1 (1991), 771–800 | DOI | MR | Zbl

[6] V. Kanev, “Hurwitz spaces of Galois coverings of $\mathbb P^1$, whose Galois groups are Weyl groups”, J. Algebra, 305:1 (2006), 442–456 | DOI | MR | Zbl

[7] P. Kluitmann, “Hurwitz action and finite quotients of braid groups”, Braids (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 299–325 | MR | Zbl

[8] S. Mochizuki, “The geometry of the compactification of the Hurwitz scheme”, Publ. Res. Inst. Math. Sci., 31:3 (1995), 355–441 | DOI | MR | Zbl

[9] B. Wajnryb, “Orbits of Hurwitz action for coverings of a sphere with two special fibers”, Indag. Math. (N.S.), 7:4 (1996), 549–558 | DOI | MR | Zbl

[10] B. Moishezon, M. Teicher, “Braid group technique in complex geometry. I. Line arrangements in $\mathbb C P^2$”, Braids (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 425–555 | MR | Zbl

[11] V. M. Kharlamov, V. S. Kulikov, “On braid monodromy factorizations”, Izv. Math., 67:3 (2003), 499–534 | DOI | MR | Zbl

[12] D. Auroux, “A stable classification of Lefschetz fibrations”, Geom. Topol., 9 (2005), 203–217 | DOI | MR | Zbl

[13] V. S. Kulikov, “Hurwitz curves”, Russian Math. Surveys, 62:6 (2007), 1043–1119 | DOI | MR | Zbl

[14] Yu. V. Kuz'min, “On a method of constructing $C$-groups”, Izv. Math., 59:4 (1995), 765–783 | DOI | MR | Zbl