On conditions for invertibility of difference and differential operators in weight spaces
Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 665-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the invertibility of the difference operator $\mathcal{D}_E\colon D(\mathcal{D}_E)\subset l^p_\alpha \to l^p_\alpha$, $(\mathcal{D}_E x)(n)=x(n+1)-Bx(n)$, $n\in \mathbb{Z}_+$, whose domain $D(\mathcal{D}_E)$ is given by the condition $x(0)\in E$, where $l^p_\alpha=l^p_\alpha(\mathbb{Z}_+,X)$, $p\in[1,\infty]$, is the Banach space of sequences (of vectors in a Banach space $X$) summable with weight $\alpha\colon\mathbb{Z}_+\to (0,\infty)$ for $p\in[1,\infty)$ and bounded with respect to $\alpha$ for $p=\infty$, $B\colon X\to X $ is a bounded linear operator, and $E$ is a closed $B$-invariant subspace of $X$. We give applications to the invertibility of differential operators with an unbounded operator coefficient (the generator of a strongly continuous operator semigroup) in weight spaces of functions.
Keywords: difference operator, spectrum of an operator, invertible operator, weight spaces of sequences and functions, linear relation, differential operator.
@article{IM2_2011_75_4_a0,
     author = {M. S. Bichegkuev},
     title = {On conditions for invertibility of difference and differential operators in weight spaces},
     journal = {Izvestiya. Mathematics },
     pages = {665--680},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a0/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - On conditions for invertibility of difference and differential operators in weight spaces
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 665
EP  - 680
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a0/
LA  - en
ID  - IM2_2011_75_4_a0
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T On conditions for invertibility of difference and differential operators in weight spaces
%J Izvestiya. Mathematics 
%D 2011
%P 665-680
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a0/
%G en
%F IM2_2011_75_4_a0
M. S. Bichegkuev. On conditions for invertibility of difference and differential operators in weight spaces. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 665-680. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a0/

[1] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | MR | Zbl

[2] R. Cross, Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, Dekker, New York, 1998 | MR | Zbl

[3] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Dekker, New York, 1999 | MR | Zbl

[4] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl

[5] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | MR | Zbl

[6] M. S. Bichegkuev, “Linear difference and differential operators with unbounded operator coefficients in weight spaces”, Math. Notes, 86:5–6 (2009), 637–644 | DOI | MR | Zbl

[7] M. S. Bichegkuev, “Conditions for solubility of difference inclusions”, Izv. Math., 72:4 (2008), 647–658 | DOI | MR | Zbl

[8] M. S. Bichegkuev, “On the spectrum of difference and differential operators in weighted spaces”, Funct. Anal. Appl., 44:1 (2010), 65–68 | DOI | MR

[9] V. V. Žikov, “Some admissibility and dichotomy questions. The averaging principle”, Math. USSR-Izv., 10:6 (1976), 1307–1332 | DOI | MR | Zbl | Zbl