Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_3_a5, author = {V. A. Krasnov}, title = {On the number of components of a three-dimensional maximal intersection of three real quadrics}, journal = {Izvestiya. Mathematics }, pages = {589--602}, publisher = {mathdoc}, volume = {75}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/} }
TY - JOUR AU - V. A. Krasnov TI - On the number of components of a three-dimensional maximal intersection of three real quadrics JO - Izvestiya. Mathematics PY - 2011 SP - 589 EP - 602 VL - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/ LA - en ID - IM2_2011_75_3_a5 ER -
V. A. Krasnov. On the number of components of a three-dimensional maximal intersection of three real quadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 589-602. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/
[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077
[2] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl
[3] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl
[4] I. V. Dolgachev, Topics in classical algebraic geometry. I, http://www.math.lsa.umich.edu/~idolga/topics.pdf
[5] O. Ja. Viro, “Curves of degree 7, curves of degree 8, and the Ragsdale conjecture”, Soviet Math. Dokl., 22:2 (1980), 566–570 | MR | Zbl
[6] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl
[7] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl
[8] V. A. Krasnov, “Maksimalnye peresecheniya trekh veschestvennykh kvadrik”, Izv. RAN. Ser. matem., 75:3, 127–146
[9] M. F. Atiyah, “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | MR | Zbl
[10] D. Mumford, “Theta characteristics of an algebraic curve”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 181–192 | MR | Zbl
[11] S. M. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, Transl. Math. Monogr., 225, Amer. Math. Soc., Providence, RI, 2004 | MR | MR | Zbl | Zbl
[12] V. Vinnikov, “Self-adjoint determinantal representations of real plane curves”, Math. Ann., 296:3 (1983), 453–479 | DOI | MR | Zbl
[13] V. A. Krasnov, “Harnack–Thom inequalities for mappings of real algebraic varieties”, Math. USSR-Izv., 22:2 (1984), 247–275 | DOI | MR | Zbl
[14] V. A. Krasnov, “Real algebraic $GM$-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl