On the number of components of a three-dimensional maximal intersection of three real quadrics
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 589-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real five-dimensional quadrics. For brevity they are referred to as real three-dimensional triquadrics. We prove the existence of real three-dimensional $M$-triquadrics with $k$ components, where $k$ is any integer in the range $1\leqslant k\leqslant 14$.
Keywords: maximal varieties, spectral curve, theta-characteristics, index function.
Mots-clés : triquadrics
@article{IM2_2011_75_3_a5,
     author = {V. A. Krasnov},
     title = {On the number of components of a three-dimensional maximal intersection of three real quadrics},
     journal = {Izvestiya. Mathematics },
     pages = {589--602},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the number of components of a three-dimensional maximal intersection of three real quadrics
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 589
EP  - 602
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/
LA  - en
ID  - IM2_2011_75_3_a5
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the number of components of a three-dimensional maximal intersection of three real quadrics
%J Izvestiya. Mathematics 
%D 2011
%P 589-602
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/
%G en
%F IM2_2011_75_3_a5
V. A. Krasnov. On the number of components of a three-dimensional maximal intersection of three real quadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 589-602. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/

[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077

[2] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl

[3] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl

[4] I. V. Dolgachev, Topics in classical algebraic geometry. I, http://www.math.lsa.umich.edu/~idolga/topics.pdf

[5] O. Ja. Viro, “Curves of degree 7, curves of degree 8, and the Ragsdale conjecture”, Soviet Math. Dokl., 22:2 (1980), 566–570 | MR | Zbl

[6] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[7] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[8] V. A. Krasnov, “Maksimalnye peresecheniya trekh veschestvennykh kvadrik”, Izv. RAN. Ser. matem., 75:3, 127–146

[9] M. F. Atiyah, “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | MR | Zbl

[10] D. Mumford, “Theta characteristics of an algebraic curve”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 181–192 | MR | Zbl

[11] S. M. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, Transl. Math. Monogr., 225, Amer. Math. Soc., Providence, RI, 2004 | MR | MR | Zbl | Zbl

[12] V. Vinnikov, “Self-adjoint determinantal representations of real plane curves”, Math. Ann., 296:3 (1983), 453–479 | DOI | MR | Zbl

[13] V. A. Krasnov, “Harnack–Thom inequalities for mappings of real algebraic varieties”, Math. USSR-Izv., 22:2 (1984), 247–275 | DOI | MR | Zbl

[14] V. A. Krasnov, “Real algebraic $GM$-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl