On the number of components of a three-dimensional maximal intersection of three real quadrics
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 589-602

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real five-dimensional quadrics. For brevity they are referred to as real three-dimensional triquadrics. We prove the existence of real three-dimensional $M$-triquadrics with $k$ components, where $k$ is any integer in the range $1\leqslant k\leqslant 14$.
Keywords: maximal varieties, spectral curve, theta-characteristics, index function.
Mots-clés : triquadrics
@article{IM2_2011_75_3_a5,
     author = {V. A. Krasnov},
     title = {On the number of components of a three-dimensional maximal intersection of three real quadrics},
     journal = {Izvestiya. Mathematics },
     pages = {589--602},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the number of components of a three-dimensional maximal intersection of three real quadrics
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 589
EP  - 602
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/
LA  - en
ID  - IM2_2011_75_3_a5
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the number of components of a three-dimensional maximal intersection of three real quadrics
%J Izvestiya. Mathematics 
%D 2011
%P 589-602
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/
%G en
%F IM2_2011_75_3_a5
V. A. Krasnov. On the number of components of a three-dimensional maximal intersection of three real quadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 589-602. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a5/