Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_3_a3, author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov}, title = {Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators}, journal = {Izvestiya. Mathematics }, pages = {539--567}, publisher = {mathdoc}, volume = {75}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/} }
TY - JOUR AU - A. Yu. Kolesov AU - E. F. Mishchenko AU - N. Kh. Rozov TI - Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators JO - Izvestiya. Mathematics PY - 2011 SP - 539 EP - 567 VL - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/ LA - en ID - IM2_2011_75_3_a3 ER -
%0 Journal Article %A A. Yu. Kolesov %A E. F. Mishchenko %A N. Kh. Rozov %T Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators %J Izvestiya. Mathematics %D 2011 %P 539-567 %V 75 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/ %G en %F IM2_2011_75_3_a3
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 539-567. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/
[1] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations”, Proc. Steklov Inst. Math., 222 (1998), 1–189 | MR | Zbl | Zbl
[2] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[3] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005
[4] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer property in resonance systems of non-linear hyperbolic equations”, Russian Math. Surveys, 55:2 (2000), 297–321 | DOI | MR | Zbl
[5] A. Yu. Kolesov, N. Kh. Rozov, “Asymptotic theory of oscillations in Vitt systems”, J. Math. Sci. (New York), 105:1 (2001), 1697–1737 | DOI | MR | Zbl
[6] A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in an $RCLG$-oscillator: Theoretical analysis and experimental results”, Proc. Steklov Inst. Math., 233 (2001), 143–196 | MR | Zbl
[7] A. A. Vitt, “Raspredelennye avtokolebatelnye sistemy”, Zhurn. tekhnich. fiziki, 4:1 (1934), 146–157 | Zbl
[8] A. C. Scott, “Distributed multimode oscillators of one and two spatial dimensions”, IEEE Trans. on circuit theory, 17:1 (1970), 55–60 | DOI
[9] A. C. Scott, “Tunnel diode arrays for information processing and storage”, IEEE Trans. Syst., Man, Cybern., 1:3 (1971), 267–275 | DOI
[10] A. Scott, Nonlinear science. Emergence and dynamics of coherent structures, Oxf. Texts Appl. Eng. Math., 8, Oxford Univ. Press, Oxford, 2003 | MR | Zbl
[11] N. N. Bogoliubov, Yu. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl
[12] Yu. N. Bibikov, Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991 | MR | Zbl
[13] A. Yu. Kolesov, A. E. Khar'kov, “Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves”, Sb. Math., 196:2 (2005), 201–229 | DOI | MR | Zbl