Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 539-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional lattice of coupled van der Pol oscillators obtained under a standard spatial discretization of the non-linear wave equation $u_{tt}+\varepsilon(u^2-1)u_{t}+u= a_1^2u_{xx}+a_2^2u_{yy}$, $a_1,a_2=\mathrm{const}>0$, $0\varepsilon\ll 1$, on the unit square with the zero Dirichlet or Neumann boundary conditions. We shall prove that the corresponding system of ordinary differential equations has attractors admitting no analogues in the original boundary-value problem. These attractors are stable invariant tori of various dimensions. We also show that the number of these tori grows unboundedly as the number of equations in the lattice is increased.
Keywords: wave equation, discretization, self-oscillation, attractor, lattice of coupled oscillators, buffer property.
Mots-clés : invariant torus
@article{IM2_2011_75_3_a3,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators},
     journal = {Izvestiya. Mathematics },
     pages = {539--567},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 539
EP  - 567
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/
LA  - en
ID  - IM2_2011_75_3_a3
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
%J Izvestiya. Mathematics 
%D 2011
%P 539-567
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/
%G en
%F IM2_2011_75_3_a3
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 539-567. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a3/

[1] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations”, Proc. Steklov Inst. Math., 222 (1998), 1–189 | MR | Zbl | Zbl

[2] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[3] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[4] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer property in resonance systems of non-linear hyperbolic equations”, Russian Math. Surveys, 55:2 (2000), 297–321 | DOI | MR | Zbl

[5] A. Yu. Kolesov, N. Kh. Rozov, “Asymptotic theory of oscillations in Vitt systems”, J. Math. Sci. (New York), 105:1 (2001), 1697–1737 | DOI | MR | Zbl

[6] A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in an $RCLG$-oscillator: Theoretical analysis and experimental results”, Proc. Steklov Inst. Math., 233 (2001), 143–196 | MR | Zbl

[7] A. A. Vitt, “Raspredelennye avtokolebatelnye sistemy”, Zhurn. tekhnich. fiziki, 4:1 (1934), 146–157 | Zbl

[8] A. C. Scott, “Distributed multimode oscillators of one and two spatial dimensions”, IEEE Trans. on circuit theory, 17:1 (1970), 55–60 | DOI

[9] A. C. Scott, “Tunnel diode arrays for information processing and storage”, IEEE Trans. Syst., Man, Cybern., 1:3 (1971), 267–275 | DOI

[10] A. Scott, Nonlinear science. Emergence and dynamics of coherent structures, Oxf. Texts Appl. Eng. Math., 8, Oxford Univ. Press, Oxford, 2003 | MR | Zbl

[11] N. N. Bogoliubov, Yu. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl

[12] Yu. N. Bibikov, Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991 | MR | Zbl

[13] A. Yu. Kolesov, A. E. Khar'kov, “Similarity and difference in the dynamics of plane and 3-dimensional non-linear waves”, Sb. Math., 196:2 (2005), 201–229 | DOI | MR | Zbl