On the extension problem for solutions of homogeneous convolution equations
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 507-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a series of counterexamples showing the unimprovability of the hypotheses of certain results related to the extension problem in the theory of convolution equations.
Keywords: mean periodicity, extension problem
Mots-clés : convolution equation, Fourier transform.
@article{IM2_2011_75_3_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {On the extension problem for solutions of homogeneous convolution equations},
     journal = {Izvestiya. Mathematics },
     pages = {507--537},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - On the extension problem for solutions of homogeneous convolution equations
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 507
EP  - 537
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a2/
LA  - en
ID  - IM2_2011_75_3_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T On the extension problem for solutions of homogeneous convolution equations
%J Izvestiya. Mathematics 
%D 2011
%P 507-537
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a2/
%G en
%F IM2_2011_75_3_a2
V. V. Volchkov; Vit. V. Volchkov. On the extension problem for solutions of homogeneous convolution equations. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 507-537. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a2/

[1] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[2] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[3] V. V. Volchkov, V. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | MR

[4] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR | Zbl

[5] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables. V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer-Verlag, Berlin, 1993, 1–108 | MR | MR | Zbl | Zbl

[6] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. I, Zinatne, Riga, 1974 | MR | Zbl

[7] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[8] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[9] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[10] H. Bremermann, Distributions, complex variables, and Fourier transforms, Addison-Wesley, Reading, MA–London, 1965 | MR | MR | Zbl | Zbl

[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[12] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[13] J. F. Treves, Lectures on linear partial differential equations with constant coefficients, Instituto de Matemática, Rio de Janeiro, 1961 | MR | Zbl | Zbl

[14] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[15] A. F. Leontev, “O svoistvakh posledovatelnostei polinomov Dirikhle, skhodyaschikhsya na intervale mnimoi osi”, Izv. AN SSSR. Ser. matem., 29:2 (1965), 269–328 | MR | Zbl

[16] A. B. Shidlovskii, Transcendental numbers, de Gruyter Stud. Math., 12, de Gruyter, Berlin, 1989 | MR | MR | Zbl | Zbl