On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 471-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional periodic self-adjoint second-order differential operator on the plane with a small localized perturbation. The perturbation is given by an arbitrary (not necessarily symmetric) operator. It is localized in the sense that it acts on a pair of weighted Sobolev spaces and sends functions of sufficiently rapid growth to functions of sufficiently rapid decay. By studying the spectrum of the perturbed operator, we establish that the essential spectrum is stable, the residual spectrum is absent, and the set of isolated eigenvalues is discrete. We obtain necessary and sufficient conditions for the existence of new eigenvalues arising from the ends of lacunae in the essential spectrum. In the case when such eigenvalues exist, we construct the first terms of asymptotic expansions of these eigenvalues and the corresponding eigenfunctions.
Keywords: non-selfadjoint operator, zone spectrum, eigenvalue, asymptotics.
Mots-clés : perturbation
@article{IM2_2011_75_3_a1,
     author = {D. I. Borisov},
     title = {On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation},
     journal = {Izvestiya. Mathematics },
     pages = {471--505},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a1/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 471
EP  - 505
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a1/
LA  - en
ID  - IM2_2011_75_3_a1
ER  - 
%0 Journal Article
%A D. I. Borisov
%T On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation
%J Izvestiya. Mathematics 
%D 2011
%P 471-505
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a1/
%G en
%F IM2_2011_75_3_a1
D. I. Borisov. On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 471-505. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a1/

[1] M. Sh. Birman, “Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant”, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–1990), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 57–73 | MR | Zbl

[2] A. V. Sobolev, “Weyl asymptotics for the discrete spectrum of the perturbed Hill operator”, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–1990), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 159–178 | MR | Zbl

[3] M. Sh. Birman, “Discrete spectrum of the periodic elliptic operator with a differential perturbation”, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1994), École Polytech., Palaiseau, 1994, Exp. No. 14 | MR | Zbl

[4] M. Sh. Birman, M. Solomyak, “On the negative discrete spectrum of a preiodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential”, J. Anal. Math., 83:1 (2001), 337–391 | DOI | MR | Zbl

[5] S. Alama, P. A. Deift, R. Hempel, “Eigenvalue branches of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma(H)$”, Comm. Math. Phys., 121:2 (1989), 291–321 | DOI | MR | Zbl

[6] T. A. Suslina, “Discrete spectrum of a two-dimensional periodic elliptic second order operator perturbed by a decaying potential. II. Internal gaps”, St. Petersburg Math. J., 15:2 (2004), 249–287 | DOI | MR | Zbl

[7] G. D. Raikov, “Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential”, Invent. Math., 110:1 (1992), 75–93 | DOI | MR | Zbl

[8] G. D. Raikov, “Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials”, Rev. Math. Phys., 14:10 (2002), 1051–1072 | DOI | MR | Zbl

[9] F. S. Rofe-Beketov, “A test for the finiteness of the number of discrete levels introduced into the gaps of a continuous spectrum by perturbations of a periodic potential”, Soviet Math. Dokl., 5:3 (1964), 689–692 | MR | Zbl

[10] V. A. Zheludev, “O sobstvennykh znacheniyakh vozmuschennogo operatora Shredingera s periodicheskim potentsialom”, Problemy matem. fiziki, 2 (1967), 108–123 | MR | Zbl

[11] V. A. Zheludev, “Perturbations of the spectrum of the Schrödinger operator with a complex periodic potential”, Spectral Theory, Topics Math. Phys., 3 (1969), 25–41 | Zbl | Zbl

[12] F. Gesztesy, B. Simon, “A short proof of Zheludev's theorem”, Trans. Amer. Math. Soc., 335:1 (1993), 329–340 | DOI | MR | Zbl

[13] D. I. Borisov, R. R. Gadyl'shin, “On the spectrum of a periodic operator with a small localized perturbation”, Izv. Math., 72:4 (2008), 659–688 | DOI | MR | Zbl

[14] D. I. Borisov, “Some singular perturbations of periodic operators”, Theoret. and Math. Phys., 151:2 (2007), 614–624 | DOI | MR | Zbl

[15] B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Physics, 97:2 (1976), 279–288 | DOI | MR | Zbl

[16] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Physics, 130:2 (1980), 251–281 | DOI | MR | Zbl

[17] R. R. Gadyl'shin, “Local perturbations of the Schrödinger operator on the axis”, Theoret. and Math. Phys., 132:1 (2002), 976–982 | DOI | MR | Zbl

[18] R. R. Gadyl'shin, “Local perturbations of the Schrödinger operator on the plane”, Theoret. and Math. Phys., 138:1 (2004), 33–44 | DOI | MR | Zbl

[19] D. Borisov, “The spectrum of two quantum layers coupled by a window”, J. Phys. A, 40:19 (2007), 5045–5066 | DOI | MR | Zbl

[20] D. Borisov, “Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients”, St. Petersburg Math. J., 20:2 (2009), 175–191 | DOI | MR

[21] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Transl., Jerusalem, 1965 | MR | MR | Zbl | Zbl

[22] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhaüser, Basel, 1993 | MR | Zbl

[23] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[24] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl

[25] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 | MR | MR | Zbl

[26] D. I. Borisov, “Discrete spectrum of an asymmetric pair of waveguides coupled through a window”, Sb. Math., 197:4 (2006), 475–504 | DOI | MR | Zbl