The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 445-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the method of similar operators to study the spectral properties of Dirac operators, and obtain results on the asymptotic behaviour of the spectra of Dirac operators and the convergence of spectral expansions.
Keywords: spectrum of an operator, Dirac operator, asymptotic behaviour of the spectrum, spectral expansions, method of similar operators.
@article{IM2_2011_75_3_a0,
     author = {A. G. Baskakov and A. V. Derbushev and A. O. Shcherbakov},
     title = {The method of similar operators in the spectral analysis of non-self-adjoint {Dirac} operators with non-smooth potentials},
     journal = {Izvestiya. Mathematics },
     pages = {445--469},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - A. V. Derbushev
AU  - A. O. Shcherbakov
TI  - The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 445
EP  - 469
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/
LA  - en
ID  - IM2_2011_75_3_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A A. V. Derbushev
%A A. O. Shcherbakov
%T The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials
%J Izvestiya. Mathematics 
%D 2011
%P 445-469
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/
%G en
%F IM2_2011_75_3_a0
A. G. Baskakov; A. V. Derbushev; A. O. Shcherbakov. The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 445-469. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/

[1] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[2] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | MR | Zbl

[3] B. S. Mityagin, “Skhodimost razlozhenii po sobstvennym funktsiyam operatora Diraka”, Dokl. RAN, 393:4 (2003), 456–459 | MR

[4] B. S. Mityagin, “Spectral expansions of one-dimensional periodic Dirac operators”, Dyn. Partial Differ. Equ., 1:2 (2004), 125–191 | MR | Zbl

[5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[6] N. Dunford, J. T. Schwartz, Linear operators, v. III, Spectral operators, Intersci. Publ., New York–London, 1971 | MR | Zbl | Zbl

[7] M. S. Agranovich, “Spectral properties of diffraction problems”, Generalized method of eigenoscillations in diffraction theory, Wiley, Berlin, 1999 | MR | MR | Zbl | Zbl

[8] A. S. Markus, V. I. Matsaev, “O skhodimosti razlozhenii po sobstvennym vektoram operatora, blizkogo k samosopryazhennomu. Lineinye operatory i integralnye uravneniya”, Matem. issled., 61 (1981), 104–129 | MR | Zbl

[9] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988 | MR | MR | Zbl | Zbl

[10] A. G. Baskakov, Garmonicheskii analiz lineinykh operatorov, Izd-vo Voronezh. gos. un-ta, Voronezh, 1987 | MR | Zbl

[11] A. G. Baskakov, “A theorem on decomposition of an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | MR | Zbl

[12] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR | Zbl

[13] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[14] P. Djakov, B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl