Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_3_a0, author = {A. G. Baskakov and A. V. Derbushev and A. O. Shcherbakov}, title = {The method of similar operators in the spectral analysis of non-self-adjoint {Dirac} operators with non-smooth potentials}, journal = {Izvestiya. Mathematics }, pages = {445--469}, publisher = {mathdoc}, volume = {75}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/} }
TY - JOUR AU - A. G. Baskakov AU - A. V. Derbushev AU - A. O. Shcherbakov TI - The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials JO - Izvestiya. Mathematics PY - 2011 SP - 445 EP - 469 VL - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/ LA - en ID - IM2_2011_75_3_a0 ER -
%0 Journal Article %A A. G. Baskakov %A A. V. Derbushev %A A. O. Shcherbakov %T The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials %J Izvestiya. Mathematics %D 2011 %P 445-469 %V 75 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/ %G en %F IM2_2011_75_3_a0
A. G. Baskakov; A. V. Derbushev; A. O. Shcherbakov. The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 445-469. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a0/
[1] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[2] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | MR | Zbl
[3] B. S. Mityagin, “Skhodimost razlozhenii po sobstvennym funktsiyam operatora Diraka”, Dokl. RAN, 393:4 (2003), 456–459 | MR
[4] B. S. Mityagin, “Spectral expansions of one-dimensional periodic Dirac operators”, Dyn. Partial Differ. Equ., 1:2 (2004), 125–191 | MR | Zbl
[5] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[6] N. Dunford, J. T. Schwartz, Linear operators, v. III, Spectral operators, Intersci. Publ., New York–London, 1971 | MR | Zbl | Zbl
[7] M. S. Agranovich, “Spectral properties of diffraction problems”, Generalized method of eigenoscillations in diffraction theory, Wiley, Berlin, 1999 | MR | MR | Zbl | Zbl
[8] A. S. Markus, V. I. Matsaev, “O skhodimosti razlozhenii po sobstvennym vektoram operatora, blizkogo k samosopryazhennomu. Lineinye operatory i integralnye uravneniya”, Matem. issled., 61 (1981), 104–129 | MR | Zbl
[9] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988 | MR | MR | Zbl | Zbl
[10] A. G. Baskakov, Garmonicheskii analiz lineinykh operatorov, Izd-vo Voronezh. gos. un-ta, Voronezh, 1987 | MR | Zbl
[11] A. G. Baskakov, “A theorem on decomposition of an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | MR | Zbl
[12] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR | Zbl
[13] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[14] P. Djakov, B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl