The Bohl index of a~homogeneous parabolic inclusion
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 347-370

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bohl index is associated with a one-parameter family of multi-valued maps of elliptic type $\mathscr F(t)$, $0\le t\infty$. It determines the asymptotic behaviour of solutions of the parabolic inclusion $0\in y'+\mathscr F(t)y$. Our main aim is to obtain lower bounds for the Bohl index. We study the nature of the dependence of solutions of the above inclusion on the initial value and the map $\mathscr F$. We prove that the Bohl index is stable with respect to perturbations that are small on the average.
Keywords: homogeneity, stability, multi-valued map
Mots-clés : inclusion, solution.
@article{IM2_2011_75_2_a4,
     author = {V. S. Klimov},
     title = {The {Bohl} index of a~homogeneous parabolic inclusion},
     journal = {Izvestiya. Mathematics },
     pages = {347--370},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - The Bohl index of a~homogeneous parabolic inclusion
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 347
EP  - 370
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/
LA  - en
ID  - IM2_2011_75_2_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T The Bohl index of a~homogeneous parabolic inclusion
%J Izvestiya. Mathematics 
%D 2011
%P 347-370
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/
%G en
%F IM2_2011_75_2_a4
V. S. Klimov. The Bohl index of a~homogeneous parabolic inclusion. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 347-370. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/