The Bohl index of a~homogeneous parabolic inclusion
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 347-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bohl index is associated with a one-parameter family of multi-valued maps of elliptic type $\mathscr F(t)$, $0\le t\infty$. It determines the asymptotic behaviour of solutions of the parabolic inclusion $0\in y'+\mathscr F(t)y$. Our main aim is to obtain lower bounds for the Bohl index. We study the nature of the dependence of solutions of the above inclusion on the initial value and the map $\mathscr F$. We prove that the Bohl index is stable with respect to perturbations that are small on the average.
Keywords: homogeneity, stability, multi-valued map
Mots-clés : inclusion, solution.
@article{IM2_2011_75_2_a4,
     author = {V. S. Klimov},
     title = {The {Bohl} index of a~homogeneous parabolic inclusion},
     journal = {Izvestiya. Mathematics },
     pages = {347--370},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - The Bohl index of a~homogeneous parabolic inclusion
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 347
EP  - 370
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/
LA  - en
ID  - IM2_2011_75_2_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T The Bohl index of a~homogeneous parabolic inclusion
%J Izvestiya. Mathematics 
%D 2011
%P 347-370
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/
%G en
%F IM2_2011_75_2_a4
V. S. Klimov. The Bohl index of a~homogeneous parabolic inclusion. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 347-370. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a4/

[1] P. Bol, Sobranie trudov, Zinatne, Riga, 1974

[2] Yu. A. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[3] N. A. Izobov, “Linear systems of ordinary differential equations”, J. Soviet Math., 5:1 (1976), 46–96 | DOI | MR | Zbl | Zbl

[4] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[5] Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations”, J. Soviet Math., 12:5 (1979), 475–554 | DOI | Zbl

[6] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, “$G$-convergence of parabolic operators”, Russian Math. Surveys, 36:1 (1981), 9–60 | DOI | MR | Zbl | Zbl

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[8] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge, 1982 | MR | MR | Zbl | Zbl

[9] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[10] V. I. Blagodatskikh, A. F. Filippov, “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | MR | Zbl | Zbl

[11] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1986 | MR | Zbl

[12] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[13] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, Wiley, New York, 1984 | MR | MR | Zbl

[14] A. Tolstonogov, Differential inclusions in a Banach space, Math. Appl., 524, Kluwer Acad. Publ., Dordrecht, 2000 | MR | MR | Zbl | Zbl

[15] A. F. Filippov, Differential equations with discontinuous right-hand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988 | MR | MR | Zbl | Zbl

[16] V. S. Klimov, “Evolution parabolic inequalities with multivalued operators”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 365–380 | DOI | MR | Zbl

[17] V. S. Klimov, “Bounded solutions of differential inclusions with homogeneous principal parts”, Izv. Math., 64:4 (2000), 755–776 | DOI | MR | Zbl

[18] V. S. Klimov, “Averaging of parabolic inclusions”, Sb. Math., 195:1 (2004), 19–34 | DOI | MR | Zbl

[19] V. S. Klimov, “Stability theorems in the first-order approximation for differential inclusions”, Math. Notes, 76:4 (2004), 478–489 | DOI | MR | Zbl

[20] I. Ekeland, R. Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, 1, North-Holland, Amsterdam–Oxford; Elsevier, New York, 1976 | MR | MR | Zbl | Zbl

[21] T. Donchev, E. Farki, “Stability and Euler approximation of one-sided Lipschitz differential inclusions”, SIAM J. Control Optim., 36:2 (1998), 780–796 | DOI | Zbl

[22] E. V. Sokolovskaya, O. P. Filatov, “Approximation from above of systems of differential inclusions with non-Lipschitzian right-hand side”, Math. Notes, 78:5 (2005), 709–718 | DOI | MR | Zbl