Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 287-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider unbounded continuously invertible operators $A$, $A_0$ on a Hilbert space $\mathfrak{H}$ such that the operator $A^{-1}-A^{-1}_0$ has finite rank. Assuming that $\sigma(A_0)=\varnothing$ and the semigroup $V_+(t):=\exp\{iA_0t\}$, $t\geqslant0$, is of class $C_0$, we state criteria under which the semigroups $U_\pm(t):=\exp\{\pm iAt\}$, $t\geqslant0$, are also of class $C_0$. We give applications to the theory of mean-periodic functions. The investigation is based on functional models of non-selfadjoint operators and on the technique of matrix Muckenhoupt weights.
Keywords: $C_0$-semigroups, functional models of non-selfadjoint operators, matrix Muckenhoupt weights, Hilbert spaces of entire functions.
@article{IM2_2011_75_2_a3,
     author = {G. M. Gubreev and Yu. D. Latushkin},
     title = {Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix {Muckenhoupt} weights},
     journal = {Izvestiya. Mathematics },
     pages = {287--346},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a3/}
}
TY  - JOUR
AU  - G. M. Gubreev
AU  - Yu. D. Latushkin
TI  - Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 287
EP  - 346
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a3/
LA  - en
ID  - IM2_2011_75_2_a3
ER  - 
%0 Journal Article
%A G. M. Gubreev
%A Yu. D. Latushkin
%T Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights
%J Izvestiya. Mathematics 
%D 2011
%P 287-346
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a3/
%G en
%F IM2_2011_75_2_a3
G. M. Gubreev; Yu. D. Latushkin. Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 287-346. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a3/

[1] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[2] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Providence, RI, Amer. Math. Soc., 1957 | MR | MR | Zbl

[3] S. G. Kreǐn, Linear differential equations in Banach space, Transl. Math. Monogr., 29, Providence, RI, Amer. Math. Soc., 1971 | MR | MR | Zbl | Zbl

[4] W. Arendt, Ch. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monogr. Math., 96, Birkhäuser, Basel, 2001 | MR | Zbl

[5] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, 1999 | MR | Zbl

[6] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | MR | Zbl

[7] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983 | MR | Zbl

[8] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[9] G. M. Gubreev, “Spectral theory of regular quasiexponentials and regular $B$-representable vector-valued functions (the projection method: 20 years later)”, St. Petersburg Math. J., 12:6 (2001), 875–947 | MR | Zbl

[10] B. S. Pavlov, “Spectral analysis of a dissipative singular Schrodinger operator in terms of a functional model”, Partial differential equations VIII, Encyclopaedia Math. Sci., 65, Springer-Verlag, Berlin, 1996, 87–153 | MR | MR | Zbl | Zbl

[11] G. M. Gubreev, Yu. D. Latushkin, “Perturbations of strongly continuous operator semigroups, and matrix Muckenhoupt weights”, Funct. Anal. Appl., 42:3 (2008), 234–238 | DOI | MR | Zbl

[12] S. Treil, A. Volberg, “Wavelets and the angle between past and future”, J. Funct. Anal., 143:2 (1997), 269–308 | DOI | MR | Zbl

[13] D. Z. Arov, H. Dym, $J$-contractive matrix valued functions and related topics, Encyclopedia Math. Appl., 116, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[14] B. Szőkefalvi-Nagy, C. Foiaş, Analyse harmonique des operateurs de l'espace de Hilbert, Masson et Cie, Paris, 1967 | MR | MR | Zbl | Zbl

[15] V. A. Zolotarev, Analiticheskie metody spektralnykh predstavlenii nesamosopryazhennykh i neunitarnykh operatorov, Iz-vo Kharkovskogo natsionaln. un-ta, Kharkov, 2003

[16] V. P. Potapov, “The multiplicative structure of $J$-contractive matrix functions”, Amer. Math. Soc. Transl. (2), 15 (1960), 131–243 | MR | MR | Zbl | Zbl

[17] M. S. Brodskii, Triangular and Jordan representations of linear operators, Amer. Math. Soc., Providence, RI, 1971 | MR | MR | Zbl | Zbl

[18] S. A. Avdonin, S. A. Ivanov, Families of exponentials. The method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[19] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[20] B. Ya. Levin, J. I. Ljubarskiǐ, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR-Izv., 9:3 (1975), 621–662 | DOI | MR | Zbl | Zbl

[21] A. M. Sedleckiǐ, “An equivalent definition of $H_p$ spaces in the half-plane and some applications”, Math. USSR-Sb., 25:1 (1975), 69–76 | DOI | MR | Zbl | Zbl

[22] I. M. Gelfand, “Ob odnoi lemme teorii lineinykh prostranstv”, Soobsch. Kharkovskogo mat. obschestva, 13:4 (1936), 35–40 | Zbl

[23] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Boston–London, Pitman, 1981 | MR | MR | Zbl | Zbl

[24] Z. D. Arova, Operator nodes with strongly regular characteristic functions, Huisdrukeruj Vrije Universitet, Amsterdam, 2003

[25] N. K. Nikol'skiǐ, Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin–Heidelberg, 1986 | MR | MR | Zbl | Zbl

[26] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[27] J. Delsarte, “Les fonctions "moyenne-périodiques”, J. Math. Pures Appl., 14 (1935), 403–453 | Zbl