Sums of powers of subsets of an arbitrary finite field
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 253-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the following problem: given an integer $n\geqslant 2$, a real number $\varepsilon\in (0,1)$, and an arbitrary subset $A\subseteq\mathbb{F}_q$ which is not contained in a multiplicative shift of a proper subfield of $\mathbb{F}_q$ and satisfies $|A|>q^{\frac{1}{n-\varepsilon}}$, where $\mathbb{F}_q$ is the finite field of $q=p^r$ elements, describe those positive integers $N$ and $m$ for which we have a set-theoretic equality $NA^m=\mathbb{F}_q$. In particular, we show that this equality holds for $m=2n-2$ and $N=N(n,r,\varepsilon)$.
Keywords: sum-products of sets, finite field.
@article{IM2_2011_75_2_a2,
     author = {A. A. Glibichuk},
     title = {Sums of powers of subsets of an arbitrary finite field},
     journal = {Izvestiya. Mathematics },
     pages = {253--285},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a2/}
}
TY  - JOUR
AU  - A. A. Glibichuk
TI  - Sums of powers of subsets of an arbitrary finite field
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 253
EP  - 285
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a2/
LA  - en
ID  - IM2_2011_75_2_a2
ER  - 
%0 Journal Article
%A A. A. Glibichuk
%T Sums of powers of subsets of an arbitrary finite field
%J Izvestiya. Mathematics 
%D 2011
%P 253-285
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a2/
%G en
%F IM2_2011_75_2_a2
A. A. Glibichuk. Sums of powers of subsets of an arbitrary finite field. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 253-285. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a2/

[1] H. Davenport, The higher arithmetic. An introduction to the theory of numbers, Hutchinson's Univ. Library, London; Longmans, New York, 1952 | MR | Zbl | Zbl

[2] D. Hilbert, Gesammelte Abhandlungen, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | Zbl

[3] Yu. V. Linnik, “Elementarnoe reshenie problemy Waring'a po metodu Shnirelmana”, Matem. sb., 12(54):2 (1943), 225–230 | MR | Zbl

[4] L. E. Dickson, Researches on Waring's problem, Carnegie Inst. of Washington Publ., Washington, 1935 | Zbl

[5] S. Pillai, “Waring's problem. V. On $g(6)$”, J. Indian Math. Soc. (N.S.), 2 (1937), 213–214 | Zbl

[6] G. H. Hardy, J. E. Littlewood, “Some problems of “Partitio Numerorum”. VI. Further researches in Waring's problem”, Math. Z., 23:1 (1925), 1–37 | DOI | MR | Zbl

[7] I. M. Vinogradov, Selected works, Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl

[8] I. M. Vinogradov, “K voprosu o verkhnei granitse dlya $G(n)$”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 637–642 | MR | Zbl

[9] A. A. Karatsuba, “On the function $G(n)$ in Waring's problem”, Math. USSR-Izv., 27:2 (1986), 239–249 | DOI | MR | Zbl | Zbl

[10] R. C. Vaughan, T. D. Wooley, “On Waring's problem: some refinements”, Proc. London Math. Soc. (3), 63:1 (1991), 35–68 | DOI | MR | Zbl

[11] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981 | MR | MR | Zbl | Zbl

[12] T. D. Wooley, “Large improvements in Waring's problem”, Ann. of Math. (2), 135:1 (1992), 131–164 | DOI | MR | Zbl

[13] D. Hilbert, “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^{\mathrm{ter}}$ Potenzen (Waringsches Problem)”, Math. Ann., 67:3 (1909), 281–300 | DOI | MR | Zbl

[14] E. Kamke, “Verallgemeinerungen des Waring–Hilbertschen Satzes”, Math. Ann., 83:1–2 (1921), 85–112 | DOI | MR | Zbl

[15] K. K. Mardzhanishvili, “Ob odnovremennom predstavlenii $n$ chisel summami polnykh pervykh, vtorykh, $\dots$, $n$-kh stepenei”, Izv. AN SSSR. Ser. matem., 1:4 (1937), 609–631 | Zbl

[16] K. K. Mardzhanishvili, “O nekotorykh nelineinykh sistemakh uravnenii v tselykh chislakh”, Matem. sb., 33(75):3 (1953), 639–675 | MR | Zbl

[17] I. M. Vinogradov, “Nekotorye problemy analiticheskoi teorii chisel”, Tr. tretego Vsesoyuznogo matem. s'ezda (Moskva, 1956), M., 1958, 3–13 | Zbl

[18] A. A. Karatsuba, “A system of congruences”, Math. Notes, 19:3 (1976), 237–239 | DOI | MR | Zbl

[19] G. I. Arkhipov, “On the value of the singular series in the Hilbert–Kamke problem”, Soviet Math. Dokl., 24 (1981), 49–51 | MR | Zbl

[20] G. I. Arkhipov, “On the Hilbert–Kamke problem”, Math. USSR-Izv., 24:1 (1985), 1–47 | DOI | MR | Zbl | Zbl

[21] V. N. Chubarikov, “On asymptotic formulas for an integral of I. M. Vinogradov and its generalizations”, Proc. Steklov Inst. Math., 157 (1983), 229–248 | MR | Zbl | Zbl

[22] L. G. Shnirelman, “Ob additivnykh svoistvakh chisel”, UMN, 1940, no. 7, 7–46

[23] H. B. Mann, “A proof of the fundamental theorem on the density of sums of set of positive integers”, Ann. of Math. (2), 43:3 (1942), 523–527 | DOI | MR | Zbl

[24] A. A. Karatsuba, “Pravilnye mnozhestva po zadannomu modulyu”, Acta Math. Inform. Univ. Ostraviensis, 6:1 (1998), 129–134 | MR | Zbl

[25] J. Bourgain, N. Katz, T. Tao, “A sum-product estimate in finite fields, and applications”, Geom. Funct. Anal., 14:1 (2004), 27–57 | DOI | MR | Zbl

[26] M. Rudnev, An improved estimate on sums of product sets, arXiv: 0805.2696

[27] A. Glibichuk, Additive properties of product sets in an arbitrary finite field, arXiv: 0801.2021

[28] A. A. Glibichuk, S. V. Konyagin, “Additive properties of product sets in fields of prime order”, Additive combinatorics (Montreal, 2006), CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 279–286 ; arXiv: math/0702729 | MR | Zbl

[29] A. A. Glibichuk, “Additive properties of product sets in the field $\mathbb{F}_{p^2}$”, Moscow Univ. Math. Bull., 64:1 (2009), 1–6 | DOI | MR

[30] A. A. Glibichuk, Cvoistva stepenei bolshikh podmnozhestv v pole iz $p^3$ elementov, dep. v VINITI 769-V2008

[31] J. Bourgain, M.-Ch. Chang, “A Gauss sum estimate in arbitrary finite fields”, C. R. Math. Acad. Sci. Paris, 342:9 (2006), 643–646 | DOI | MR | Zbl

[32] P. Erdős, E. Szemerédi, “On sums and products of integers”, Studies in pure mathematics, Birkhäuser, Basel, 1983, 213–218 | MR | Zbl

[33] J. Solymosi, “Bounding multiplicative energy by the sumset”, Adv. Math., 222:2 (2009), 402–408 | DOI | MR | Zbl

[34] I. M. Vinogradov, Osnovy teorii chisel, RKhD, M.–Izhevsk, 2005 | MR | Zbl

[35] N. H. Katz, Ch.-Y. Shen, “Garaev's inequality in finite fields not of prime order”, Online J. Anal. Comb., 2008, no. 3, Art. 3 | MR | Zbl

[36] J. Bourgain, A. A. Glibichuk, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums in fields of prime order”, J. London Math. Soc. (2), 73:2 (2006), 380–398 | DOI | MR | Zbl

[37] D. A. Burgess, P. D. T. A. Elliott, “The average of the least primitive root”, Mathematika, 15 (1968), 39–50 | DOI | MR | Zbl

[38] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 2004 | MR | Zbl

[39] T. Tao, V. H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[40] A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem”, Math. Notes, 79:3–4 (2006), 356–365 | DOI | MR | Zbl

[41] M. Kneser, “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z., 58:1 (1953), 459–484 | DOI | MR | Zbl

[42] T. Cochrane, C. Pinner, “Sum-product estimates applied to Waring's problem mod $p$”, Integers, 8:1 (2008), A46 | MR | Zbl