Sums of powers of subsets of an arbitrary finite field
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 253-285
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the following problem: given an integer $n\geqslant 2$, a real number $\varepsilon\in (0,1)$, and an arbitrary subset $A\subseteq\mathbb{F}_q$ which is not contained in a multiplicative shift of a proper subfield of $\mathbb{F}_q$ and satisfies $|A|>q^{\frac{1}{n-\varepsilon}}$, where $\mathbb{F}_q$ is the finite field of $q=p^r$ elements, describe those positive integers $N$ and $m$ for which we have a set-theoretic equality $NA^m=\mathbb{F}_q$. In particular, we show that this equality holds for $m=2n-2$ and $N=N(n,r,\varepsilon)$.
Keywords:
sum-products of sets, finite field.
@article{IM2_2011_75_2_a2,
author = {A. A. Glibichuk},
title = {Sums of powers of subsets of an arbitrary finite field},
journal = {Izvestiya. Mathematics },
pages = {253--285},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a2/}
}
A. A. Glibichuk. Sums of powers of subsets of an arbitrary finite field. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 253-285. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a2/