The amenability of the substitution group of formal power series
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 239-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the amenability property for the group $\mathcal{J}(\mathbf{k})$ of formal power series in one variable with coefficients in a commutative ring $\mathbf{k}$ with identity. We show that there exists an invariant mean on the space $C_{\mathrm{u}}^*(\mathcal{J}(\mathbf{k}))$ of uniformly continuous bounded functions on this group. This is equivalent to the fact that every continuous action of $\mathcal{J}(\mathbf{k})$ on every compact space has an invariant probability measure.
Keywords: topological group, invariant mean.
Mots-clés : group action
@article{IM2_2011_75_2_a1,
     author = {I. K. Babenko and S. A. Bogatyi},
     title = {The amenability of the substitution group of formal power series},
     journal = {Izvestiya. Mathematics },
     pages = {239--252},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/}
}
TY  - JOUR
AU  - I. K. Babenko
AU  - S. A. Bogatyi
TI  - The amenability of the substitution group of formal power series
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 239
EP  - 252
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/
LA  - en
ID  - IM2_2011_75_2_a1
ER  - 
%0 Journal Article
%A I. K. Babenko
%A S. A. Bogatyi
%T The amenability of the substitution group of formal power series
%J Izvestiya. Mathematics 
%D 2011
%P 239-252
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/
%G en
%F IM2_2011_75_2_a1
I. K. Babenko; S. A. Bogatyi. The amenability of the substitution group of formal power series. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 239-252. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/

[1] S. A. Jennings, “Substitution groups of formal power series”, Canadian J. Math., 6 (1954), 325–340 | DOI | MR | Zbl

[2] R. Camina, “The Nottingham group”, New horizons in pro-$p$ groups, Progr. Math., 184, Birkhäuser, Boston, MA, 2000, 205–221 | MR | Zbl

[3] I. K. Babenko, S. A. Bogatyi, “On the group of substitutions of formal power series with integer coefficients”, Izv. Math., 72:2 (2008), 241–264 | DOI | MR | Zbl

[4] B. Szegedy, “Almost all finitely generated subgroups of the Nottingham group are free”, Bull. London Math. Soc., 37:1 (2005), 75–79 | DOI | MR | Zbl

[5] M. Malicki, “Non-locally compact Polish groups and two-sided translates of open sets”, Fund. Math., 200:3 (2008), 279–295 | DOI | MR | Zbl

[6] I. Babenko, S. Bogatyi, On topological properties of the formal power series substitution group, arXiv: 0912.1813

[7] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, London, 1969 | MR | Zbl | Zbl

[8] A. L. T. Paterson, Amenability, Math. Surveys Monogr., 29, Providence, RI, Amer. Math. Soc., 1988 | MR | Zbl

[9] P. de la Harpe, “Moyennabilité de quelques groupes topologiques de dimension infinie”, C. R. Acad. Sci. Paris Sér. A–B, 277 (1973), 1037–1040 | MR | Zbl

[10] M. M. Day, “Fixed-point theorems for compact convex sets”, Illinois J. Math., 5 (1961), 585–590 | MR | Zbl

[11] M. M. Day, “Correction to my paper “Fixed-point theorems for compact convex sets””, Illinois J. Math., 8 (1964), 713 | MR | Zbl

[12] N. W. Rickert, “Amenable groups and groups with the fixed point property”, Trans. Amer. Math. Soc., 127 (1967), 221–232 | DOI | MR | Zbl

[13] N. N. Bogolubov, Selected works, v. I, Classics Soviet Math., 2, Gordon and Breach, New York, 1990 | MR | Zbl

[14] M. G. Megrelishvili, “Ob ekvivariantnoi normalnosti”, Soobsch. AN GruzSSR, 111:1 (1983), 17–19 | Zbl

[15] N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification: theory and applications, de Gruyter Exp. Math., 27, de Gruyter, Berlin, 1998 | MR | Zbl

[16] J. B. Conway, A course in functional analysis, Grad. Texts in Math., 96, Springer-Verlag, New York, 1985 | MR | Zbl

[17] R. Ellis, “Universal minimal sets”, Proc. Amer. Math. Soc., 11 (1960), 540–543 | DOI | MR | Zbl

[18] W. R. Veech, “Topological dynamics”, Bull. Amer. Math. Soc., 83 (1977), 775–830 | DOI | MR | Zbl

[19] M. G. Megrelishvili, “A Tikhonov $G$-space not admitting a compact Hausdorff $G$-extension or $G$-linearization”, Russian Math. Surveys, 43:2 (1988), 177–178 | DOI | MR | Zbl

[20] P. Samuel, “Ultrafilters and compactification of uniform spaces”, Trans. Amer. Math. Soc., 64:1 (1948), 100–132 | DOI | MR | Zbl

[21] E. Glasner, M. Megrelishvili, “New algebras of functions on topological groups arising from $G$-spaces”, Fund. Math., 201:1 (2008), 1–51 | DOI | MR | Zbl

[22] J. Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966 | MR | Zbl

[23] W. W. Comfort, K. A. Ross, “Pseudocompactness and uniform continuity in topological groups”, Pacific J. Math., 16:3 (1966), 483–496 | MR | Zbl

[24] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya: osnovnye konstruktsii, Izd-vo Mosk. un-ta, M., 1988 | Zbl

[25] S. Z. Solecki, “Amenability, free subgroups, and Haar null sets in non-locally compact groups”, Proc. London Math. Soc., 93:3 (2006), 693–722 | DOI | MR | Zbl