The amenability of the substitution group of formal power series
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 239-252

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the amenability property for the group $\mathcal{J}(\mathbf{k})$ of formal power series in one variable with coefficients in a commutative ring $\mathbf{k}$ with identity. We show that there exists an invariant mean on the space $C_{\mathrm{u}}^*(\mathcal{J}(\mathbf{k}))$ of uniformly continuous bounded functions on this group. This is equivalent to the fact that every continuous action of $\mathcal{J}(\mathbf{k})$ on every compact space has an invariant probability measure.
Keywords: topological group, invariant mean.
Mots-clés : group action
@article{IM2_2011_75_2_a1,
     author = {I. K. Babenko and S. A. Bogatyi},
     title = {The amenability of the substitution group of formal power series},
     journal = {Izvestiya. Mathematics },
     pages = {239--252},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/}
}
TY  - JOUR
AU  - I. K. Babenko
AU  - S. A. Bogatyi
TI  - The amenability of the substitution group of formal power series
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 239
EP  - 252
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/
LA  - en
ID  - IM2_2011_75_2_a1
ER  - 
%0 Journal Article
%A I. K. Babenko
%A S. A. Bogatyi
%T The amenability of the substitution group of formal power series
%J Izvestiya. Mathematics 
%D 2011
%P 239-252
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/
%G en
%F IM2_2011_75_2_a1
I. K. Babenko; S. A. Bogatyi. The amenability of the substitution group of formal power series. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 239-252. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a1/