Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 157-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a solution of the Dirichlet problem for a second order elliptic equation with non-linear part discontinuous in the phase variable is proved in the cases of resonance on the left and resonance on the right of the first eigenvalue of the differential operator in the situation where the Landesman–Lazer conditions do not hold.
Keywords: resonance elliptic boundary-value problems, discontinuous non-linearities, Landesman–Lazer condition.
@article{IM2_2011_75_1_a5,
     author = {E. A. Rozhdestvenskaya},
     title = {Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded},
     journal = {Izvestiya. Mathematics },
     pages = {157--176},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/}
}
TY  - JOUR
AU  - E. A. Rozhdestvenskaya
TI  - Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 157
EP  - 176
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/
LA  - en
ID  - IM2_2011_75_1_a5
ER  - 
%0 Journal Article
%A E. A. Rozhdestvenskaya
%T Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded
%J Izvestiya. Mathematics 
%D 2011
%P 157-176
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/
%G en
%F IM2_2011_75_1_a5
E. A. Rozhdestvenskaya. Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 157-176. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/

[1] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[2] E. M. Landesman, A. C. Lazer, “Nonlinear perturbations of linear elliptic boundary value problems at resonance”, J. Math. Mech., 19:3 (1970), 609–623 | MR | Zbl

[3] S. Ahmad, A. C. Lazer, J. L. Paul, “Elementary critical point theory and perturbations of elliptic boundary value problems at resonance”, Indiana Univ. Math. J., 25:10 (1976), 933–944 | DOI | MR | Zbl

[4] H. Brézis, L. Nirenberg, “Characterizations of the ranges of some nonlinear operators and applications to boundary value problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:2 (1978), 225–326 | MR | Zbl

[5] P. H. Rabinowitz, “Some minimax theorems and applications to nonlinear partial differential equations”, Nonlinear analysis, Academic Press, New York–San Diego, CA, 1978, 161–177 | MR | Zbl

[6] A. Ambrosetti, G. Mancini, “Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue”, J. Differential Equations, 28:2 (1978), 220–245 | DOI | MR | Zbl

[7] A. Ambrosetti, G. Mancini, “Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:1 (1978), 15–28 | MR | Zbl

[8] H. Berestycki, D. G. de Figueiredo, “Double resonance in semilinear elliptic problems”, Comm. Partial Differential Equations, 6:1 (1981), 91–120 | DOI | MR | Zbl

[9] J.-P. Gossez, P. Omari, “Non-ordered lower and upper solutions in semilinear elliptic problems”, Comm. Partial Differential Equations, 19:7–8 (1994), 1163–1184 | DOI | MR | Zbl

[10] R. Iannacci, M. N. Nkashama, “Nonlinear elliptic partial differential equations at resonance: Higher eigenvalues”, Nonlinear Anal., 25:5 (1995), 455–471 | DOI | MR | Zbl

[11] T. Runst, “Semilinear elliptic boundary value problems in resonance with superlinear nonlinearities”, Differential Equations, 34:9 (1998), 1181–1187 | MR | Zbl

[12] P. J. McKenna, “Discontinuous perturbations of elliptic boundary value problems at resonance”, Nonlinear equations in abstract spaces (Univ. Texas, Arlington, TX, 1977), Academic Press., New York, 1978, 375–386 | MR | Zbl

[13] N. Basile, M. Mininni, “Some solvability results for elliptic boundary value problems in resonance at the first eigenvalue with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1023–1033 | MR | Zbl

[14] I. Massabó, “Elliptic boundary value problems at resonance with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1308–1320 | MR | Zbl

[15] K.-Ch. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[16] V. N. Pavlenko, V. V. Vinokur, “Resonance boundary value problems for elliptic equations with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 45:5 (2001), 40–55 | MR | Zbl

[17] V. N. Pavlenko, V. V. Vinokur, “Existence theorems for equations with noncoercive discontinuous operators”, Ukrainian Math. J., 54:3 (2002), 429–447 | DOI | MR | Zbl

[18] D. G. de Figueiredo, W.-N. Ni, “Perturbations of second order linear elliptic problems by nonlinearities without Landesman–Lazer condition”, Nonlinear Anal., 3:5 (1979), 629–634 | DOI | MR | Zbl

[19] R. Iannacci, M. N. Nkashama, J. R. Ward, jun., “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl

[20] M. A. Krasnosel'skii, A. V. Pokrovskii, “Elliptic equations with discontinuous nonlinearities”, Dokl. Math., 51:3 (1995), 415–418 | MR | Zbl

[21] V. N. Pavlenko, “Existence of semiregular solutions of the Dirichlet problem for quasilinear equations of elliptic type with discontinuous nonlinearities”, Ukrainian Math. J., 41:12 (1989), 1429–1433 | DOI | MR | Zbl

[22] M. A. Krasnosel'skii, A. V. Pokrovskii, Systems with hysteresis, Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[23] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differential Equations, 27:3 (1991), 374–379 | MR | Zbl

[24] T.-W. Ma, “Topological degrees of set-valued compact fields in locally convex spaces”, Dissertationes Math. Rozprawy Mat., 92 (1972), 3–47 | MR | Zbl

[25] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl