Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_1_a5, author = {E. A. Rozhdestvenskaya}, title = {Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded}, journal = {Izvestiya. Mathematics }, pages = {157--176}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/} }
TY - JOUR AU - E. A. Rozhdestvenskaya TI - Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded JO - Izvestiya. Mathematics PY - 2011 SP - 157 EP - 176 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/ LA - en ID - IM2_2011_75_1_a5 ER -
E. A. Rozhdestvenskaya. Existence theorems for resonance boundary-value problems of elliptic type with discontinuous unbounded. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 157-176. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a5/
[1] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[2] E. M. Landesman, A. C. Lazer, “Nonlinear perturbations of linear elliptic boundary value problems at resonance”, J. Math. Mech., 19:3 (1970), 609–623 | MR | Zbl
[3] S. Ahmad, A. C. Lazer, J. L. Paul, “Elementary critical point theory and perturbations of elliptic boundary value problems at resonance”, Indiana Univ. Math. J., 25:10 (1976), 933–944 | DOI | MR | Zbl
[4] H. Brézis, L. Nirenberg, “Characterizations of the ranges of some nonlinear operators and applications to boundary value problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:2 (1978), 225–326 | MR | Zbl
[5] P. H. Rabinowitz, “Some minimax theorems and applications to nonlinear partial differential equations”, Nonlinear analysis, Academic Press, New York–San Diego, CA, 1978, 161–177 | MR | Zbl
[6] A. Ambrosetti, G. Mancini, “Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue”, J. Differential Equations, 28:2 (1978), 220–245 | DOI | MR | Zbl
[7] A. Ambrosetti, G. Mancini, “Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:1 (1978), 15–28 | MR | Zbl
[8] H. Berestycki, D. G. de Figueiredo, “Double resonance in semilinear elliptic problems”, Comm. Partial Differential Equations, 6:1 (1981), 91–120 | DOI | MR | Zbl
[9] J.-P. Gossez, P. Omari, “Non-ordered lower and upper solutions in semilinear elliptic problems”, Comm. Partial Differential Equations, 19:7–8 (1994), 1163–1184 | DOI | MR | Zbl
[10] R. Iannacci, M. N. Nkashama, “Nonlinear elliptic partial differential equations at resonance: Higher eigenvalues”, Nonlinear Anal., 25:5 (1995), 455–471 | DOI | MR | Zbl
[11] T. Runst, “Semilinear elliptic boundary value problems in resonance with superlinear nonlinearities”, Differential Equations, 34:9 (1998), 1181–1187 | MR | Zbl
[12] P. J. McKenna, “Discontinuous perturbations of elliptic boundary value problems at resonance”, Nonlinear equations in abstract spaces (Univ. Texas, Arlington, TX, 1977), Academic Press., New York, 1978, 375–386 | MR | Zbl
[13] N. Basile, M. Mininni, “Some solvability results for elliptic boundary value problems in resonance at the first eigenvalue with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1023–1033 | MR | Zbl
[14] I. Massabó, “Elliptic boundary value problems at resonance with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1308–1320 | MR | Zbl
[15] K.-Ch. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[16] V. N. Pavlenko, V. V. Vinokur, “Resonance boundary value problems for elliptic equations with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 45:5 (2001), 40–55 | MR | Zbl
[17] V. N. Pavlenko, V. V. Vinokur, “Existence theorems for equations with noncoercive discontinuous operators”, Ukrainian Math. J., 54:3 (2002), 429–447 | DOI | MR | Zbl
[18] D. G. de Figueiredo, W.-N. Ni, “Perturbations of second order linear elliptic problems by nonlinearities without Landesman–Lazer condition”, Nonlinear Anal., 3:5 (1979), 629–634 | DOI | MR | Zbl
[19] R. Iannacci, M. N. Nkashama, J. R. Ward, jun., “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl
[20] M. A. Krasnosel'skii, A. V. Pokrovskii, “Elliptic equations with discontinuous nonlinearities”, Dokl. Math., 51:3 (1995), 415–418 | MR | Zbl
[21] V. N. Pavlenko, “Existence of semiregular solutions of the Dirichlet problem for quasilinear equations of elliptic type with discontinuous nonlinearities”, Ukrainian Math. J., 41:12 (1989), 1429–1433 | DOI | MR | Zbl
[22] M. A. Krasnosel'skii, A. V. Pokrovskii, Systems with hysteresis, Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl
[23] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differential Equations, 27:3 (1991), 374–379 | MR | Zbl
[24] T.-W. Ma, “Topological degrees of set-valued compact fields in locally convex spaces”, Dissertationes Math. Rozprawy Mat., 92 (1972), 3–47 | MR | Zbl
[25] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl