On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 101-156

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notions of $T$-solutions and shift $T$-solutions of variational inequalities corresponding to a non-linear degenerate anisotropic elliptic operator, a constraint set in a sufficiently large class, and an $L^1$-right-hand side. We prove theorems on the existence and uniqueness of such solutions and describe their properties. While the notion of $T$-solution is defined only when the constraint set contains at least one bounded function, the notion of shift $T$-solution does not require this condition. We describe the relation between these notions and prove that these types of solutions of a variational inequality coincide with ordinary solutions whenever the right-hand side is sufficiently regular.
Keywords: degenerate anisotropic elliptic variational inequalities, $L^1$-data, shift $T$-solution, existence and uniqueness of solutions.
Mots-clés : $T$-solution
@article{IM2_2011_75_1_a4,
     author = {A. A. Kovalevsky and Yu. S. Gorban},
     title = {On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data},
     journal = {Izvestiya. Mathematics },
     pages = {101--156},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a4/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
AU  - Yu. S. Gorban
TI  - On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 101
EP  - 156
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a4/
LA  - en
ID  - IM2_2011_75_1_a4
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%A Yu. S. Gorban
%T On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data
%J Izvestiya. Mathematics 
%D 2011
%P 101-156
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a4/
%G en
%F IM2_2011_75_1_a4
A. A. Kovalevsky; Yu. S. Gorban. On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 101-156. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a4/