On the decay of solutions of non-uniformly elliptic equations
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 53-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain upper and lower bounds for the rate of decay at infinity for a solution of a second-order non-uniformly elliptic equation in an unbounded domain with alternating types of boundary condition, both of the first and third types. We prove that the bound for this rate of decay is sharp, both in the case of a rather arbitrary alternation of boundary conditions of the first and third types and in the case of an equation degenerating on the boundary of an unbounded domain.
Keywords: degenerate elliptic equation, rate of decay of solutions, unbounded domain.
@article{IM2_2011_75_1_a2,
     author = {V. F. Gilimshina and F. Kh. Mukminov},
     title = {On the decay of solutions of non-uniformly elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {53--71},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a2/}
}
TY  - JOUR
AU  - V. F. Gilimshina
AU  - F. Kh. Mukminov
TI  - On the decay of solutions of non-uniformly elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 53
EP  - 71
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a2/
LA  - en
ID  - IM2_2011_75_1_a2
ER  - 
%0 Journal Article
%A V. F. Gilimshina
%A F. Kh. Mukminov
%T On the decay of solutions of non-uniformly elliptic equations
%J Izvestiya. Mathematics 
%D 2011
%P 53-71
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a2/
%G en
%F IM2_2011_75_1_a2
V. F. Gilimshina; F. Kh. Mukminov. On the decay of solutions of non-uniformly elliptic equations. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 53-71. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a2/

[1] L. M. Kozhevnikova, “Anisotropic classes of uniqueness of the solution of the Dirichlet problem for quasi-elliptic equations”, Izv. Math., 70:6 (2006), 1165–1200 | DOI | MR | Zbl

[2] E. M. Landis, “On the behavior of solutions of higher-order elliptic equations in unbounded domains”, Trans. Mosc. Math. Soc., 31 (1976), 30–54 | MR | Zbl | Zbl

[3] V. A. Kondrat'ev, “On the solvability of the first boundary value problem for elliptic equations”, Soviet Math. Dokl., 2 (1961), 127–130 | MR | Zbl

[4] V. A. Kondrat'ev, S. D. Eidel'man, “Positive solutions of linear partial differential equations”, Trans. Mosc. Math. Soc., 31 (1976), 81–148 | MR | Zbl | Zbl

[5] O. A. Oleǐnik, E. V. Radkevič, “Analyticity and theorems of Liouville and Phragmen–Lindelöf type for general elliptic systems of differential equations”, Math. USSR-Sb., 24:1 (1974), 127–143 | DOI | MR | Zbl | Zbl

[6] O. A. Oleǐnik, G. A. Iosif'jan, “On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary”, Math. USSR-Sb., 40:4 (1981), 527–548 | DOI | MR | Zbl | Zbl

[7] A. F. Tedeev, A. E. Shishkov, “Povedenie reshenii kvazilineinykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Dokl. AN USSR. Ser. A, 9 (1984), 23–27 | MR | Zbl

[8] A. E. Shishkov, “Behavior of solutions of the Dirichlet problem for quasilinear divergent higher-order elliptic equations in unbounded domains”, Siberian Math. J., 28:6 (1987), 972–982 | DOI | MR | Zbl

[9] V. A. Kondrat'ev, J. Kopacek, D. M. Lekveishvili, O. A. Olejnik, “Sharp estimates in Hölder spaces and precise Saint-Venant principle for solutions of the biharmonic equation”, Proc. Steklov Inst. Math., 166 (1986), 97–116 | MR | Zbl | Zbl

[10] V. M. Mikljukov, “On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion”, Math. USSR-Sb., 39:1 (1981), 37–60 | DOI | MR | Zbl

[11] L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032 | DOI | MR | Zbl

[12] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl

[13] V. P. Mihaǐlov, “On the boundary values of solutions of elliptic equations in domains with a smooth boundary”, Math. USSR-Sb., 30:2 (1976), 143–166 | DOI | MR | Zbl | Zbl

[14] V. P. Mikhailov, “Existence of boundary values for biharmonic functions”, Sb. Math., 195:12 (2004), 1781–1793 | DOI | MR | Zbl

[15] V. P. Mikhailov, “Existence of the boundary value of a polyharmonic function”, Siberian Math. J., 46:5 (2005), 902–912 | DOI | MR | Zbl

[16] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[17] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl

[18] A. K. Gushchin, “Smoothness of solutions to the Dirichlet problem for a second-order elliptic equation with a square integrable boundary function”, Dokl. Math., 76:1 (2007), 486–489 | DOI | MR | Zbl

[19] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl

[20] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl