Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_1_a2, author = {V. F. Gilimshina and F. Kh. Mukminov}, title = {On the decay of solutions of non-uniformly elliptic equations}, journal = {Izvestiya. Mathematics }, pages = {53--71}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a2/} }
V. F. Gilimshina; F. Kh. Mukminov. On the decay of solutions of non-uniformly elliptic equations. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 53-71. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a2/
[1] L. M. Kozhevnikova, “Anisotropic classes of uniqueness of the solution of the Dirichlet problem for quasi-elliptic equations”, Izv. Math., 70:6 (2006), 1165–1200 | DOI | MR | Zbl
[2] E. M. Landis, “On the behavior of solutions of higher-order elliptic equations in unbounded domains”, Trans. Mosc. Math. Soc., 31 (1976), 30–54 | MR | Zbl | Zbl
[3] V. A. Kondrat'ev, “On the solvability of the first boundary value problem for elliptic equations”, Soviet Math. Dokl., 2 (1961), 127–130 | MR | Zbl
[4] V. A. Kondrat'ev, S. D. Eidel'man, “Positive solutions of linear partial differential equations”, Trans. Mosc. Math. Soc., 31 (1976), 81–148 | MR | Zbl | Zbl
[5] O. A. Oleǐnik, E. V. Radkevič, “Analyticity and theorems of Liouville and Phragmen–Lindelöf type for general elliptic systems of differential equations”, Math. USSR-Sb., 24:1 (1974), 127–143 | DOI | MR | Zbl | Zbl
[6] O. A. Oleǐnik, G. A. Iosif'jan, “On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary”, Math. USSR-Sb., 40:4 (1981), 527–548 | DOI | MR | Zbl | Zbl
[7] A. F. Tedeev, A. E. Shishkov, “Povedenie reshenii kvazilineinykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Dokl. AN USSR. Ser. A, 9 (1984), 23–27 | MR | Zbl
[8] A. E. Shishkov, “Behavior of solutions of the Dirichlet problem for quasilinear divergent higher-order elliptic equations in unbounded domains”, Siberian Math. J., 28:6 (1987), 972–982 | DOI | MR | Zbl
[9] V. A. Kondrat'ev, J. Kopacek, D. M. Lekveishvili, O. A. Olejnik, “Sharp estimates in Hölder spaces and precise Saint-Venant principle for solutions of the biharmonic equation”, Proc. Steklov Inst. Math., 166 (1986), 97–116 | MR | Zbl | Zbl
[10] V. M. Mikljukov, “On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion”, Math. USSR-Sb., 39:1 (1981), 37–60 | DOI | MR | Zbl
[11] L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032 | DOI | MR | Zbl
[12] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl
[13] V. P. Mihaǐlov, “On the boundary values of solutions of elliptic equations in domains with a smooth boundary”, Math. USSR-Sb., 30:2 (1976), 143–166 | DOI | MR | Zbl | Zbl
[14] V. P. Mikhailov, “Existence of boundary values for biharmonic functions”, Sb. Math., 195:12 (2004), 1781–1793 | DOI | MR | Zbl
[15] V. P. Mikhailov, “Existence of the boundary value of a polyharmonic function”, Siberian Math. J., 46:5 (2005), 902–912 | DOI | MR | Zbl
[16] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl
[17] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl
[18] A. K. Gushchin, “Smoothness of solutions to the Dirichlet problem for a second-order elliptic equation with a square integrable boundary function”, Dokl. Math., 76:1 (2007), 486–489 | DOI | MR | Zbl
[19] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl
[20] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl