Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_6_a6, author = {I. S. Rezvyakova}, title = {Zeros of linear combinations of {Hecke} $L$-functions on the critical line}, journal = {Izvestiya. Mathematics }, pages = {1277--1314}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a6/} }
I. S. Rezvyakova. Zeros of linear combinations of Hecke $L$-functions on the critical line. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1277-1314. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a6/
[1] A. Selberg, “Old and new conjectures about class of Dirichlet series”, Collected papers, v. II, Springer-Verlag, Berlin, 1991, 47–63
[2] A. Selberg, “On the zeros of Riemann's zeta-function”, Skr. Norske Vid.-Akad., Oslo, 1943, no. 10, 1–59 | MR | Zbl
[3] N. Levinson, “More than one third of zeros of Riemann's zeta-function are on $\sigma=1/2$”, Advances in Math., 13:4 (1974), 383–436 | DOI | MR | Zbl
[4] V. G. Zhuravlev, “Vychislenie postoyannoi v teoreme Selberga o nulyakh $\zeta$-funktsii Rimana na kriticheskoi pryamoi”, Sb. issl. po teor. funktsii i funkts. anal., Vladimir, 1974, 39–51
[5] B. Conrey, “Zeros of derivatives of Riemann's $\xi$-function on the critical line”, J. Number Theory, 16:1 (1983), 49–74 | DOI | MR | Zbl
[6] B. Conrey, “Zeros of derivatives of Riemann's $\xi$-function of the critical line. II”, J. Number Theory, 17:1 (1983), 71–75 | DOI | MR | Zbl
[7] R. J. Anderson, “Simple zeros of the Riemann zeta-function”, J. Number Theory, 17:2 (1983), 176–182 | DOI | MR | Zbl
[8] J. B. Conrey, “More than two fifths of the zeros of the Riemann zeta-function are on the critical line”, J. Reine Angew. Math., 399 (1989), 1–26 | DOI | MR | Zbl
[9] V. G. Zhuravlev, “Zeros of the Dirichlet $L$-functions on short segments of the critical line”, J. Soviet Math., 18:3 (1982), 339–350 | DOI | MR | Zbl | Zbl
[10] G. H. Hardy, J. E. Littlewood, “The zeros of Riemann's zeta-function on the critical line”, Math. Z., 10:3–4 (1921), 283–317 | DOI | MR | Zbl
[11] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series. I, II”, J. London Math. Soc., 11 (1936), 181–185 ; 307–312 | DOI | Zbl | DOI | Zbl
[12] S. M. Voronin, “On the zeros of zeta-functions of quadratic forms”, Proc. Steklov Inst. Math., 142 (1979), 143–155 | MR | Zbl
[13] S. M. Voronin, Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. ... dokt. fiz.-matem. nauk, MIAN SSSR, M., 1977
[14] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, de Gruyter, Berlin, 1992 | MR | MR | Zbl | Zbl
[15] E. Bombieri, D. A. Hejhal, “Sur les zéros des fonctions zêta d'Epstein”, C. R. Acad. Sci. Paris Sér. I Math., 304:9 (1987), 213–217 | MR | Zbl
[16] S. M. Voronin, “On the zeros of some Dirichlet series lying on the critical line”, Math. USSR-Izv., 16:1 (1981), 55–82 | DOI | MR | Zbl | Zbl
[17] A. A. Karatsuba, “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Math. USSR-Izv., 36:2 (1991), 311–324 | DOI | MR | Zbl | Zbl
[18] A. A. Karatsuba, “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., 207 (1995), 163–177 | MR | Zbl
[19] J. L. Hafner, “Zeros on the critical line for Dirichlet series attached to certain cusp forms”, Math. Ann., 264:1 (1983), 21–37 | DOI | MR | Zbl
[20] J. L. Hafner, “Zeros on the critical line for Maass wave form $L$-functions”, J. Reine Angew. Math., 377 (1987), 127–158 | DOI | MR | Zbl
[21] H. Iwaniec, Topics in classical automorphic forms, Grad. Stud. Math., 17, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[22] E. Hecke, Vorlesungen uber die Theorie der algebraischen Zahlen, Akademische Verlag, Leipzig, 1923 | MR | Zbl
[23] E. Hecke, “Über die Zetafunktion beliebiger algebraischer Zahlkörper”, Nach. Ges. Wiss. Göttingen. Mat.-Phys. Kl., 1917 (1917), 77–89 | Zbl
[24] E. Hecke, “Zur Theorie der elliptischen Modulfunktionen”, Math. Ann., 97:1 (1926), 210–242 | DOI | MR | Zbl
[25] S. A. Gritsenko, “Zeros of linear combinations of functions of a special type that are connected with Selberg Dirichlet series”, Izv. Math., 60:4 (1996), 655–694 | DOI | MR | Zbl
[26] S. A. Gritsenko, Nuli arifmeticheskikh ryadov Dirikhle, Dis. ... dokt. fiz.-matem. nauk, MIAN, M., 1997
[27] S. A. Gritsenko, “On the zeros of linear combinations of the analogs of Riemann's function”, Proc. Steklov Inst. Math., 218 (1997), 129–145 | MR | Zbl
[28] S. A. Gritsenko, “Zeros of a special type of function associated with Hecke $L$-functions of imaginary quadratic fields”, Izv. Math., 61:1 (1997), 45–68 | DOI | MR | Zbl
[29] M. Jutila, “Convolutions of Fourier coefficients of cusp forms”, Publ. Inst. Math. (Beograd) (N.S.), 65 (1999), 31–51 | MR | Zbl
[30] W. Duke, J. B. Friedlander, H. Iwaniec, “The subconvexity problem for Artin $L$-functions”, Invent. Math., 149:3 (2002), 489–577 | DOI | MR | Zbl
[31] G. Harcos, “An additive problem in the Fourier coefficients of cusp forms”, Math. Ann., 326:2 (2003), 347–365 | DOI | MR | Zbl
[32] V. Blomer, “Rankin–Selberg $L$-functions on the critical line”, Manuscripta Math., 117:2 (2005), 111–133 | DOI | MR | Zbl
[33] I. S. Rezvyakova, “O nulyakh na kriticheskoi pryamoi $L$-funktsii, sootvetstvuyuschikh avtomorfnym parabolicheskim formam”, Matem. zametki, 88:3 (2010), 456–475
[34] R. A. Rankin, “Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms”, Proc. Cambridge Philos. Soc., 35 (1939), 357–372 | DOI | MR | Zbl
[35] M. Jutila, “Distribution of rational numbers in short intervals”, Ramanujan J., 14:2 (2007), 321–327 | DOI | MR | Zbl
[36] M. Jutila, “Transformations of exponential sums”, Proceedings of the Amalfi conference on analytic number theory (Maiori, Amalfi, Italy, 1989), Univ. Salerno, Salerno, 1992, 263–270 | MR | Zbl
[37] J. R. Wilton, “A note on Ramanujan's arithmetical function $\tau(n)$”, Proc. Camb. Phil. Soc., 25 (1929), 121–129 | DOI | Zbl