On the average number of power residues modulo a~composite number
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1225-1254
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behaviour of the quantities $a_{n}(q)$ and $b_{n}(q)$, that is, the number of $n$th power residues in the reduced and complete residue systems modulo a composite number $q$, respectively, where $n\geqslant2$ is an arbitrary fixed number. In particular, we prove asymptotic formulae for the sum functions $A_{n}(x)$ and $B_{n}(x)$ of these quantities.
Keywords:
power residues, average number of power residues, Lehmer–Landau problem.
@article{IM2_2010_74_6_a4,
author = {M. A. Korolev},
title = {On the average number of power residues modulo a~composite number},
journal = {Izvestiya. Mathematics },
pages = {1225--1254},
publisher = {mathdoc},
volume = {74},
number = {6},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/}
}
M. A. Korolev. On the average number of power residues modulo a~composite number. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1225-1254. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/