On the average number of power residues modulo a~composite number
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1225-1254

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behaviour of the quantities $a_{n}(q)$ and $b_{n}(q)$, that is, the number of $n$th power residues in the reduced and complete residue systems modulo a composite number $q$, respectively, where $n\geqslant2$ is an arbitrary fixed number. In particular, we prove asymptotic formulae for the sum functions $A_{n}(x)$ and $B_{n}(x)$ of these quantities.
Keywords: power residues, average number of power residues, Lehmer–Landau problem.
@article{IM2_2010_74_6_a4,
     author = {M. A. Korolev},
     title = {On the average number of power residues modulo a~composite number},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1254},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On the average number of power residues modulo a~composite number
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1225
EP  - 1254
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/
LA  - en
ID  - IM2_2010_74_6_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On the average number of power residues modulo a~composite number
%J Izvestiya. Mathematics 
%D 2010
%P 1225-1254
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/
%G en
%F IM2_2010_74_6_a4
M. A. Korolev. On the average number of power residues modulo a~composite number. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1225-1254. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/