On the average number of power residues modulo a~composite number
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1225-1254.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behaviour of the quantities $a_{n}(q)$ and $b_{n}(q)$, that is, the number of $n$th power residues in the reduced and complete residue systems modulo a composite number $q$, respectively, where $n\geqslant2$ is an arbitrary fixed number. In particular, we prove asymptotic formulae for the sum functions $A_{n}(x)$ and $B_{n}(x)$ of these quantities.
Keywords: power residues, average number of power residues, Lehmer–Landau problem.
@article{IM2_2010_74_6_a4,
     author = {M. A. Korolev},
     title = {On the average number of power residues modulo a~composite number},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1254},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On the average number of power residues modulo a~composite number
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1225
EP  - 1254
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/
LA  - en
ID  - IM2_2010_74_6_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On the average number of power residues modulo a~composite number
%J Izvestiya. Mathematics 
%D 2010
%P 1225-1254
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/
%G en
%F IM2_2010_74_6_a4
M. A. Korolev. On the average number of power residues modulo a~composite number. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1225-1254. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a4/

[1] D. N. Lehmer, “Asymptotic evaluation of certain totient sums”, Amer. J. Math., 22:4 (1900), 293–335 | DOI | MR | Zbl

[2] E. Landau, “Bemerkungen zu Herrn D. N. Lehmer's Abhandlung in Bd. 22 dieses Journals, S. 293–335”, Amer. J. Math., 26:3 (1904), 209–222 | DOI | MR | Zbl

[3] E. Landau, “Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate”, Archiv der Mathematik und Physik, Ser. 3, 13 (1908), 305–312 | Zbl

[4] E. Landau, “Lösung des Lehmer'schen Problems”, Amer. J. Math., 31:1 (1909), 86–102 | DOI | MR | Zbl

[5] D. A. Raikov, “O raspredelenii chisel, prostye deliteli kotorykh prinadlezhat zadannoi arifmeticheskoi progressii”, Matem. sb., 4(46):3 (1938), 563–570 | Zbl

[6] P. Kuhn, “Über ein Problem in der Theorie der Primzahlen”, Ark. Mat., 4:1 (1960), 1–14 | DOI | MR | Zbl

[7] Sh. Kh. Tutushev, “Ob odnoi zadache Landau”, Tr. Fizicheskogo ob-va Respubliki Adygeya, 2 (1997), 70–74; http://fora.adygnet.ru/?1997

[8] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publ., New York, 1974 | MR | Zbl

[9] J. Chungang, “The number of $k$th power residues modulo $m$”, J. Nanjing Norm. Univ. Nat. Sci. Ed., 24:1 (2001), 1–2 | Zbl

[10] A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl

[11] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl

[12] B. V. Levin, A. S. Fainleib, “Application of some integral equations to problems of number theory”, Russian Math. Survey, 22:3 (1967), 119–204 | DOI | MR | Zbl

[13] A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1971 | MR | MR | Zbl | Zbl

[14] E. Wirsing, “Das asymptotische Verhalten von Summen über multiplikative Funktionen”, Math. Ann., 143:1 (1961), 75–102 | DOI | MR | Zbl

[15] S. Finch, P. Sebah, Squares and Cubes Modulo $n$, arXiv: math.NT/0604465v2