Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_6_a2, author = {M. V. Karasev and E. M. Novikova}, title = {Algebra and quantum geometry of multifrequency resonance}, journal = {Izvestiya. Mathematics }, pages = {1155--1204}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a2/} }
M. V. Karasev; E. M. Novikova. Algebra and quantum geometry of multifrequency resonance. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1155-1204. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a2/
[1] V. M. Babic, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Ser. Wave Phenomena, 4, Springer-Verlag, Berlin, 1991 | MR | MR | Zbl | Zbl
[2] N. N. Bogolubov, N. N. Bogolubov, jr., An introduction to quantum statistical mechanics, Gordon and Breach, Yverdon, 1994 | MR | MR | Zbl | Zbl
[3] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl
[4] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc., New York, 1927 | MR | Zbl | Zbl
[5] F. G. Gustavson, “Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point”, Astron. J., 71 (1966), 670–686 | DOI
[6] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics”, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988, 1–291 | MR | MR | Zbl | Zbl
[7] Á. S. Egilsson, “On embedding the $1:1:2$ resonance space in a Poisson manifold”, Electron. Res. Announc. Amer. Math. Soc., 1:2 (1995), 48–56 | DOI | MR | Zbl
[8] B. L. Davis, “Embedding dimensions of Poisson spaces”, Int. Math. Res. Not., 2002, no. 34, 1805–1839 | DOI | MR | Zbl
[9] A. S. Egilsson, Newton polyhedra and Poisson structures from certain linear Hamiltonian circle actions, arXiv: abs/math/0411398
[10] M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. II”, Adv. Stud. Contemp. Math. (Kyungshang), 11:1 (2005), 33–56 | MR | Zbl
[11] M. V. Karasev, “Rezonansy i kvantovyi metod kharakteristik”, Mezhdunarod. konf. “Differentsialnye uravneniya i smezhnye voprosy” (Moskva, 2004), MGU, M., 2004, 99–100
[12] M. Karasev, “Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances”, Quantum algebras and Poisson geometry in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 1–17 | MR | Zbl
[13] M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. III”, Russ. J. Math. Phys., 13:2 (2006), 131–150 | DOI | MR | Zbl
[14] M. Karasev, “Resonance gyrons and quantum geometry”, From geometry to quantum mechanics, Progr. Math., 252, Birkhäuser, Boston, 2007, 253–275 | MR | Zbl
[15] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin–New York, 1976 | MR | MR | Zbl | Zbl
[16] V. P. Maslov, “Application of the method of ordered operators to obtain exact solutions”, Theoret. and Math. Phys., 33:2 (1977), 960–976 | DOI | MR | Zbl | Zbl
[17] M. V. Karasev, “The asymptotic spectrum and oscillation front for operators with nonlinear commutation relations”, Soviet Math. Dokl., 19:6 (1978), 1300–1304 | MR | Zbl
[18] L. D. Faddeev, “Kvantovye vpolne integriruemye modeli teorii polya”, Problemy kvantovoi teorii polya, Dubna, 1979, 249–299 | Zbl
[19] V. P. Maslov, V. E. Nazaikinskii, “Algebras with general commutation relations and their applications. I. Pseudodifferential equations with increasing coefficients”, J. Soviet Math., 15:3 (1981), 167–273 | DOI | MR | Zbl
[20] M. V. Karasev, V. P. Maslov, “Algebras with general commutation relations and their applications. II. Unitary-nonlinear operator equations”, J. Soviet Math., 15:3 (1981), 167–273 | DOI | MR | Zbl
[21] E. K. Sklyanin, “Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras”, Funct. Anal. Appl., 17:4 (1983), 273–284 | DOI | MR | Zbl
[22] L. D. Faddeev, L. A. Takhtadzhyan, Hamiltonian methods in the theory of solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl
[23] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1:1 (1990), 193–225 | MR | Zbl
[24] M. V. Karasev, V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, Transl. Math. Monogr., 119, Amer. Math. Soc., Providence, RI, 1993 | MR | MR | Zbl | Zbl
[25] M. Karasev, E. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent transform, quantization, and Poisson geometry, Amer. Math. Soc. Transl. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 1998, 1–202 | MR | Zbl
[26] M. V. Karasev, E. M. Novikova, “Quadratic Poisson brackets in the Zeeman effect. Irreducible representations and coherent states”, Russian Math. Surveys, 49:5 (1994), 179–180 | DOI | MR | Zbl
[27] M. V. Karasev, E. M. Novikova, “Representation of exact and semiclassical eigenfunctions via coherent states. Hydrogen atom in a magnetic field”, Theoret. and Math. Phys., 108:3 (1996), 1119–1159 | DOI | MR | Zbl
[28] M. V. Karasev, E. M. Novikova, “Algebra with polynomial commutation relations for the Zeeman–Stark effect in the hydrogen atom”, Theoret. and Math. Phys., 142:3 (2005), 447–469 | DOI | MR | MR | Zbl | Zbl
[29] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996 | MR | MR | Zbl | Zbl
[30] G. W. Schwartz, “Smooth functions invariant under the action of a compact Lie group”, Topology, 14:1 (1975), 63–68 | DOI | MR | Zbl
[31] M. Karasev, “Advances in quantization: quantum tensors, explicit star-products, and restriction to irreducible leaves”, Differential Geom. Appl., 9:1–2 (1998), 89–134 | DOI | MR | Zbl
[32] M. V. Karasev, “Quantum surfaces, special functions, and the tunneling effect”, Lett. Math. Phys., 56:3 (2001), 229–269 | DOI | MR | Zbl
[33] V. V. Kozlov, Dynamical systems X. General theory of vortices, Encyclopaedia Math. Sci., 67, Springer-Verlag, Berlin, 2003 | MR | MR | Zbl | Zbl
[34] B. Kostant, “Quantization and unitary representations. I. Prequantization”, Lectures in modern analysis and applications. III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | DOI | MR | MR | Zbl | Zbl
[35] E. M. Novikova, “Minimal basis of the symmetry algebra for three-frequency resonance”, Russ. J. Math. Phys., 16:4 (2009), 518–528 | DOI | MR | Zbl
[36] V. A. Fok, Raboty po kvantovoi teorii polya, Izd-vo LGU, L., 1957 | MR | Zbl
[37] S. Bergman, The Kernel function and conformal mapping, Math. Surveys, 5, Amer. Math. Soc., Providence, RI, 1950 | MR | Zbl
[38] Sh. Chern, “Scientific report on the second summer institute, several complex variables. Part II. Complex manifolds”, Bull. Amer. Math. Soc., 62:2 (1956), 101–117 | DOI | MR | Zbl
[39] F. A. Berezin, The method of second quantization, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl
[40] A. Perelomov, Generalized coherent states and their applications, Texts Monogr. Phys., Springer-Verlag, Berlin, 1986 | MR | MR | Zbl | Zbl