Algebra and quantum geometry of multifrequency resonance
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1155-1204

Voir la notice de l'article provenant de la source Math-Net.Ru

The algebra of symmetries of a quantum resonance oscillator in the case of three or more frequencies is described using a finite (minimal) basis of generators and polynomial relations. For this algebra, we construct quantum leaves with a complex structure (an analogue of classical symplectic leaves) and a quantum Kähler 2-form, a reproducing measure, and also the corresponding irreducible representations and coherent states.
Keywords: frequency resonance, algebra of symmetries, non-linear commutation relations, quantum Kähler forms, coherent states.
@article{IM2_2010_74_6_a2,
     author = {M. V. Karasev and E. M. Novikova},
     title = {Algebra and quantum geometry of multifrequency resonance},
     journal = {Izvestiya. Mathematics },
     pages = {1155--1204},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a2/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - E. M. Novikova
TI  - Algebra and quantum geometry of multifrequency resonance
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1155
EP  - 1204
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a2/
LA  - en
ID  - IM2_2010_74_6_a2
ER  - 
%0 Journal Article
%A M. V. Karasev
%A E. M. Novikova
%T Algebra and quantum geometry of multifrequency resonance
%J Izvestiya. Mathematics 
%D 2010
%P 1155-1204
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a2/
%G en
%F IM2_2010_74_6_a2
M. V. Karasev; E. M. Novikova. Algebra and quantum geometry of multifrequency resonance. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1155-1204. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a2/