Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_6_a0, author = {R. S. Avdeev}, title = {Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups}, journal = {Izvestiya. Mathematics }, pages = {1103--1126}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/} }
TY - JOUR AU - R. S. Avdeev TI - Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups JO - Izvestiya. Mathematics PY - 2010 SP - 1103 EP - 1126 VL - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/ LA - en ID - IM2_2010_74_6_a0 ER -
R. S. Avdeev. Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1103-1126. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/
[1] È. B. Vinberg, B. N. Kimel'fel'd, “Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups”, Funct. Anal. Appl., 12:3 (1978), 168–174 | DOI | MR | Zbl
[2] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl
[3] I. V. Mikityuk, “On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces”, Math. USSR-Sb., 57:2 (1987), 527–546 | DOI | MR | Zbl | Zbl
[4] M. Brion, “Classification des espaces homogènes sphériques”, Compositio Math., 63:2 (1987), 189–208 | MR | Zbl
[5] O. S. Yakimova, “Weakly symmetric spaces of semisimple Lie groups”, Moscow Univ. Math. Bull., 57:2 (2002), 37–40 | MR | Zbl
[6] Yu. V. Dzyadyk, “On the determination of the spectrum of an induced representation on a compact symmetric space”, Soviet Math. Dokl., 16:1 (1975), 193–197 | MR | Zbl
[7] Yu. V. Dzyadyk, “Representations realizable in vector fields on compact symmetric spaces”, Soviet Math. Dokl., 16:1 (1975), 229–232 | MR | Zbl
[8] Yu. V. Dzyadyk, “Induced representations on symmetric and spherical spaces”, Abstracts of conference “Transformation groups”, Moscow, 2007, 39–44
[9] D. I. Panyushev, “Complexity and rank of homogeneous spaces”, Geom. Dedicata, 34:3 (1990), 249–269 | DOI | MR | Zbl
[10] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry. IV: Linear algebraic groups, invariant theory, Encycl. Math. Sci., 55, 1994, 123–278 | MR | Zbl | Zbl
[11] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl
[12] E. B. Vinberg, “Commutative homogeneous spaces and co-isotropic symplectic actions”, Russian Math. Surveys, 56:1 (2001), 1–60 | DOI | MR | Zbl
[13] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl
[14] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy unimodulyarnykh matrits”, Dokl. AN SSSR, 71:5 (1950), 825–828 | MR | Zbl
[15] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, Dokl. AN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl
[16] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl