Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1103-1126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extended weight semigroup of a homogeneous space $G/H$ of a connected semisimple algebraic group $G$ characterizes the spectra of the representations of $G$ on spaces of regular sections of homogeneous line bundles over $G/H$, including the space of regular functions on $G/H$. We compute the extended weight semigroups for all strictly irreducible affine spherical homogeneous spaces $G/H$, where $G$ is a simply connected non-simple semisimple complex algebraic group and $H$ is a connected closed subgroup of $G$. In all cases we also find the highest-weight functions corresponding to the indecomposable elements of this semigroup. Among other things, our results complete the computation of the weight semigroups for all strictly irreducible simply connected affine spherical homogeneous spaces of semisimple complex algebraic groups.
Keywords: representation, homogeneous space, algebra of invariants, semigroup.
Mots-clés : algebraic group
@article{IM2_2010_74_6_a0,
     author = {R. S. Avdeev},
     title = {Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups},
     journal = {Izvestiya. Mathematics },
     pages = {1103--1126},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/}
}
TY  - JOUR
AU  - R. S. Avdeev
TI  - Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1103
EP  - 1126
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/
LA  - en
ID  - IM2_2010_74_6_a0
ER  - 
%0 Journal Article
%A R. S. Avdeev
%T Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups
%J Izvestiya. Mathematics 
%D 2010
%P 1103-1126
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/
%G en
%F IM2_2010_74_6_a0
R. S. Avdeev. Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1103-1126. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a0/

[1] È. B. Vinberg, B. N. Kimel'fel'd, “Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups”, Funct. Anal. Appl., 12:3 (1978), 168–174 | DOI | MR | Zbl

[2] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl

[3] I. V. Mikityuk, “On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces”, Math. USSR-Sb., 57:2 (1987), 527–546 | DOI | MR | Zbl | Zbl

[4] M. Brion, “Classification des espaces homogènes sphériques”, Compositio Math., 63:2 (1987), 189–208 | MR | Zbl

[5] O. S. Yakimova, “Weakly symmetric spaces of semisimple Lie groups”, Moscow Univ. Math. Bull., 57:2 (2002), 37–40 | MR | Zbl

[6] Yu. V. Dzyadyk, “On the determination of the spectrum of an induced representation on a compact symmetric space”, Soviet Math. Dokl., 16:1 (1975), 193–197 | MR | Zbl

[7] Yu. V. Dzyadyk, “Representations realizable in vector fields on compact symmetric spaces”, Soviet Math. Dokl., 16:1 (1975), 229–232 | MR | Zbl

[8] Yu. V. Dzyadyk, “Induced representations on symmetric and spherical spaces”, Abstracts of conference “Transformation groups”, Moscow, 2007, 39–44

[9] D. I. Panyushev, “Complexity and rank of homogeneous spaces”, Geom. Dedicata, 34:3 (1990), 249–269 | DOI | MR | Zbl

[10] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry. IV: Linear algebraic groups, invariant theory, Encycl. Math. Sci., 55, 1994, 123–278 | MR | Zbl | Zbl

[11] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl

[12] E. B. Vinberg, “Commutative homogeneous spaces and co-isotropic symplectic actions”, Russian Math. Surveys, 56:1 (2001), 1–60 | DOI | MR | Zbl

[13] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[14] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy unimodulyarnykh matrits”, Dokl. AN SSSR, 71:5 (1950), 825–828 | MR | Zbl

[15] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, Dokl. AN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl

[16] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl