Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 993-1022.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there are no linear algorithms of affine synthesis for affine systems in the Lebesgue space $L^1[0,1]$ with respect to the model space $\ell^1$, although the corresponding affine synthesis problem has a positive solution under the most general assumptions. At the same time, by imposing additional conditions on the generating function of the affine system, we can give an explicit linear algorithm of affine synthesis in the Lebesgue space when the model space is that of the coefficients of the system. This linear algorithm generalizes the Fourier–Haar expansion into orthogonal series.
Keywords: affine system, affine synthesis, frames in Banach spaces, representation system, Fourier–Haar series, primary space.
@article{IM2_2010_74_5_a2,
     author = {P. A. Terekhin},
     title = {Linear algorithms of affine synthesis in the {Lebesgue} space $L^1[0,1]$},
     journal = {Izvestiya. Mathematics },
     pages = {993--1022},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a2/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 993
EP  - 1022
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a2/
LA  - en
ID  - IM2_2010_74_5_a2
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$
%J Izvestiya. Mathematics 
%D 2010
%P 993-1022
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a2/
%G en
%F IM2_2010_74_5_a2
P. A. Terekhin. Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 993-1022. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a2/

[1] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl

[2] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Jahresber. Deutsch. Math.-Ver., 19 (1910), 104–112 | Zbl

[3] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Z., 26:1 (1927), 47–65 | DOI | MR | Zbl

[4] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005

[6] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[7] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[8] R. J. Duffin, A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:2 (1952), 341–366 | DOI | MR | Zbl

[9] N. K. Bari, “O bazisakh v gilbertovom prostranstve”, Dokl. AN SSSR, 54:5 (1946), 383–386

[10] N. K. Bari, “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU, 148(4) (1951), 69–107 | MR

[11] M. A. Naimark, “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. matem., 4:3 (1940), 277–318 | MR | Zbl

[12] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, The functional and harmonic analysis of wavelets and frames, Proceedings of the AMS special session (San Antonio, TX, USA, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 149–182 | MR | Zbl

[13] B. S. Kashin, T. Yu. Kulikova, “Note on the description of frames of general form”, Math. Notes, 72:5–6 (2002), 863–867 | DOI | MR | Zbl

[14] S. Ya. Novikov, “Bessel sequences as projections of orthogonal systems”, Math. Notes, 81:5–6 (2007), 800–809 | DOI | MR | Zbl

[15] W. Czaja, “Remarks on Naimark's duality”, Proc. Amer. Math. Soc., 136:3 (2008), 867–871 | DOI | MR | Zbl

[16] K. Gröchenig, “Describing functions: atomic decompositions versus frames”, Monatsh. Math., 112:1 (1991), 1–42 | DOI | MR | Zbl

[17] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2003 | MR | Zbl

[18] P. A. Terekhin, “Representation systems and projections of bases”, Math. Notes, 75:5–6 (2004), 881–884 | DOI | MR | Zbl

[19] R. E. Edwards, Fourier series. A modern introduction, v. 1, Grad. Texts in Math., 64, Springer-Verlag, New York–Berlin, 1979 | MR | MR | Zbl | Zbl

[20] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | MR | Zbl

[21] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33:1 (1932), 1–100 | DOI | MR | Zbl

[22] A. Pietsch, Operator ideals, Math. Monogr., 16, VEB, Berlin, 1978 | MR | MR | Zbl | Zbl

[23] A. Pelczyński, “Projections in certain Banach spaces”, Studia Math., 19 (1960), 209–228 | MR | Zbl

[24] P. A. Terekhin, “Banach frames in the affine synthesis problem”, Sb. Math., 200:9 (2009), 1383–1402 | DOI | MR | Zbl