Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_5_a2, author = {P. A. Terekhin}, title = {Linear algorithms of affine synthesis in the {Lebesgue} space $L^1[0,1]$}, journal = {Izvestiya. Mathematics }, pages = {993--1022}, publisher = {mathdoc}, volume = {74}, number = {5}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a2/} }
P. A. Terekhin. Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 993-1022. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a2/
[1] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl
[2] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Jahresber. Deutsch. Math.-Ver., 19 (1910), 104–112 | Zbl
[3] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Z., 26:1 (1927), 47–65 | DOI | MR | Zbl
[4] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl
[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005
[6] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[7] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl
[8] R. J. Duffin, A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:2 (1952), 341–366 | DOI | MR | Zbl
[9] N. K. Bari, “O bazisakh v gilbertovom prostranstve”, Dokl. AN SSSR, 54:5 (1946), 383–386
[10] N. K. Bari, “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchenye zapiski MGU, 148(4) (1951), 69–107 | MR
[11] M. A. Naimark, “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. matem., 4:3 (1940), 277–318 | MR | Zbl
[12] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, The functional and harmonic analysis of wavelets and frames, Proceedings of the AMS special session (San Antonio, TX, USA, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 149–182 | MR | Zbl
[13] B. S. Kashin, T. Yu. Kulikova, “Note on the description of frames of general form”, Math. Notes, 72:5–6 (2002), 863–867 | DOI | MR | Zbl
[14] S. Ya. Novikov, “Bessel sequences as projections of orthogonal systems”, Math. Notes, 81:5–6 (2007), 800–809 | DOI | MR | Zbl
[15] W. Czaja, “Remarks on Naimark's duality”, Proc. Amer. Math. Soc., 136:3 (2008), 867–871 | DOI | MR | Zbl
[16] K. Gröchenig, “Describing functions: atomic decompositions versus frames”, Monatsh. Math., 112:1 (1991), 1–42 | DOI | MR | Zbl
[17] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2003 | MR | Zbl
[18] P. A. Terekhin, “Representation systems and projections of bases”, Math. Notes, 75:5–6 (2004), 881–884 | DOI | MR | Zbl
[19] R. E. Edwards, Fourier series. A modern introduction, v. 1, Grad. Texts in Math., 64, Springer-Verlag, New York–Berlin, 1979 | MR | MR | Zbl | Zbl
[20] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | MR | Zbl
[21] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33:1 (1932), 1–100 | DOI | MR | Zbl
[22] A. Pietsch, Operator ideals, Math. Monogr., 16, VEB, Berlin, 1978 | MR | MR | Zbl | Zbl
[23] A. Pelczyński, “Projections in certain Banach spaces”, Studia Math., 19 (1960), 209–228 | MR | Zbl
[24] P. A. Terekhin, “Banach frames in the affine synthesis problem”, Sb. Math., 200:9 (2009), 1383–1402 | DOI | MR | Zbl