Birational geometry of Fano double spaces of index two
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 925-991

Voir la notice de l'article provenant de la source Math-Net.Ru

We study birational geometry of Fano varieties realized as double covers $\sigma\colon V\to{\mathbb P}^M$, $M\geqslant5$, branched over generic smooth hypersurfaces $W=W_{2(M-1)}$ of degree $2(M-1)$. We prove that the only structures of a rationally connected fibre space on $V$ are pencil-subsystems of the free linear system $|{-\frac12K_V}|$. The groups of birational and biregular self-maps of $V$ coincide: $\operatorname{Bir}V=\operatorname{Aut}V$.
Keywords: Fano variety, maximal singularity, rationally connected fibre space, birational self-map.
Mots-clés : birational map
@article{IM2_2010_74_5_a1,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of {Fano} double spaces of index two},
     journal = {Izvestiya. Mathematics },
     pages = {925--991},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of Fano double spaces of index two
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 925
EP  - 991
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/
LA  - en
ID  - IM2_2010_74_5_a1
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of Fano double spaces of index two
%J Izvestiya. Mathematics 
%D 2010
%P 925-991
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/
%G en
%F IM2_2010_74_5_a1
A. V. Pukhlikov. Birational geometry of Fano double spaces of index two. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 925-991. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/