Birational geometry of Fano double spaces of index two
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 925-991.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study birational geometry of Fano varieties realized as double covers $\sigma\colon V\to{\mathbb P}^M$, $M\geqslant5$, branched over generic smooth hypersurfaces $W=W_{2(M-1)}$ of degree $2(M-1)$. We prove that the only structures of a rationally connected fibre space on $V$ are pencil-subsystems of the free linear system $|{-\frac12K_V}|$. The groups of birational and biregular self-maps of $V$ coincide: $\operatorname{Bir}V=\operatorname{Aut}V$.
Keywords: Fano variety, maximal singularity, rationally connected fibre space, birational self-map.
Mots-clés : birational map
@article{IM2_2010_74_5_a1,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of {Fano} double spaces of index two},
     journal = {Izvestiya. Mathematics },
     pages = {925--991},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of Fano double spaces of index two
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 925
EP  - 991
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/
LA  - en
ID  - IM2_2010_74_5_a1
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of Fano double spaces of index two
%J Izvestiya. Mathematics 
%D 2010
%P 925-991
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/
%G en
%F IM2_2010_74_5_a1
A. V. Pukhlikov. Birational geometry of Fano double spaces of index two. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 925-991. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a1/

[1] A. V. Pukhlikov, “Birationally rigid varieties. I. Fano varieties”, Russian Math. Surveys, 62:5 (2007), 857–942 | DOI | MR | Zbl

[2] T. Graber, J. Harris, J. Starr, “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67 | DOI | MR | Zbl

[3] V. A. Iskovskih, J. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl | Zbl

[4] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[6] A. V. Pukhlikov, “Maximal singularities on the Fano variety $V^3_6$”, Mosc. Univ. Math. Bull., 44:2 (1989), 70–75 | MR | Zbl

[7] V. A. Iskovskikh, A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds”, J. Math. Sci., 82:4 (1996), 3528–3613 | DOI | MR | Zbl

[8] I. A. Cheltsov, M. M. Grinenko, Birational rigidity is not an open property, arXiv: abs/math/0612159

[9] G. Fano, “Nuove ricerche sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Pont. Acad. Sci. Comment., 11 (1947), 635–720 | MR | Zbl

[10] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 815–868 | DOI | MR | Zbl | Zbl

[11] S. I. Khashin, “Birational automorphisms of a double Veronese cone of dimension three”, Mosc. Univ. Math. Bull., 39:1 (1984), 15–20 | MR | Zbl

[12] M. M. Grinenko, “Mori structures on a Fano threefold of index 2 and degree 1”, Proc. Steklov Inst. Math., 246:3 (2004), 103–128 | MR | Zbl

[13] A. V. Pukhlikov, “Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces”, Izv. Math., 62:1 (1998), 115–155 | DOI | MR | Zbl

[14] V. A. Iskovskih, “Algebraic threefolds with special regard to the problem of rationality”, Proceedings of the International Congress of Mathematicians (Warszawa, 1983), v. I, 1–2, PWN, Warszawa; North-Holland, Amsterdam–New York–Oxford, 1984, 733–746 | MR | Zbl

[15] M. M. Grinenko, “New Mori structures on a double space of index 2”, Russian Math. Surveys, 59:3 (2004), 573–574 | DOI | MR | Zbl

[16] M. M. Grinenko, “Fibrations into del Pezzo surfaces”, Russian Math. Surveys, 61:2 (2006), 255–300 | DOI | MR | Zbl

[17] C. H. Clemens, Ph. A. Griffiths, “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR

[18] A. N. Tyurin, “Five lectures on three-dimensional varieties”, Russian Math. Surveys, 27:5 (1972), 1–53 | DOI | MR | Zbl | Zbl

[19] A. N. Tyurin, “The middle Jacobian of three-dimensional varieties”, J. Soviet Math., 13:6 (1980), 707–745 | DOI | MR | Zbl | Zbl

[20] J. Kollár, “Nonrational Hypersurfaces”, J. Amer. Math. Soc., 8:1 (1995), 241–249 | DOI | MR | Zbl

[21] A. S. Tihomirov, “The intermediate Jacobian of the double covering of $P^3$ branched at a quartic”, Math. USSR-Izv., 17:3 (1981), 523–566 | DOI | MR | Zbl | Zbl

[22] A. S. Tikhomirov, “Singularities of the theta divisor of the intermediate Jacobian of a double cover of $P^3$ of index two”, Math. USSR-Izv., 21:2 (1983), 355–373 | DOI | MR | Zbl

[23] A. S. Tikhomirov, “Letter to the editors of the journal "Ivestiya an SSSR Seriya Matematicheskaya”, Math. USSR-Izv., 27:1 (1986), 201 | DOI | MR | Zbl | Zbl

[24] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | MR | Zbl

[25] A. V. Pukhlikov, “Birational automorphisms of a double space and double quadric”, Math. USSR-Izv., 32:1 (1989), 233–243 | DOI | MR | Zbl

[26] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | MR | Zbl

[27] A. V. Pukhlikov, “Explicit examples of birationally rigid Fano varieties”, Mosc. Math. J., 7:3 (2007), 543–560 | MR | Zbl

[28] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, arXiv: 0706.0751

[29] J. Kollár, Flips and abundance for algebraic threefolds (University of Utah, Salt Lake City, 1991), Asterisque, 211, Soc. Math. de France, Paris, 1992 | MR | Zbl

[30] J. Kollár, “Singularities of pairs”, Algebraic geometry – Santa Cruz, Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1995, 221–286 | MR | Zbl

[31] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[32] A. V. Pukhlikov, “Birational automorphisms of a three-dimensional quartic with a quadratic singularity”, Math. USSR-Sb., 63:2 (1989), 457–482 | DOI | MR | Zbl | Zbl

[33] A. V. Pukhlikov, “Birationally rigid iterated Fano double covers”, Izv. Math., 67:3 (2003), 555–596 | DOI | MR | Zbl

[34] I. A. Cheltsov, “Local inequalities and birational superrigidity of Fano varieties”, Izv. Math., 70:3 (2006), 605–639 | DOI | MR | Zbl

[35] I. A. Cheltsov, “Non-rationality of the 4-dimensional smooth complete intersection of a quadric and a quartic not containing planes”, Sb. Math., 194:11 (2003), 1679–1699 | DOI | MR | Zbl

[36] I. Cheltsov, “Double cubics and double quartics”, Math. Z., 253:1 (2006), 75–86 | DOI | MR | Zbl

[37] A. V. Pukhlikov, On the $8n^2$-inequality, arXiv: 0811.0183

[38] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl

[39] V. A. Iskovskikh, “Birational rigidity of Fano hypersurfaces in the framework of Mori theory”, Russian Math. Surveys, 56:2 (2001), 207–291 | DOI | MR | Zbl

[40] A. V. Pukhlikov, “Essentials of the method of maximal singularities”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl

[41] A. V. Pukhlikov, “Birational isomorphisms of four-dimensional quintics”, Invent. Math., 87:2 (1987), 303–329 | DOI | MR | Zbl