On embeddings of universal torsors over del~Pezzo surfaces in cones over flag varieties
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 883-923.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following Skorobogatov and Serganova, we construct embeddings of universal torsors over del Pezzo surfaces in cones over flag varieties regarded as closed orbits in the projectivizations of quasi-miniscule representations. Our approach enables us to construct embeddings of universal torsors over del Pezzo surfaces of degree 1. This approach uses the notion of Mumford stability and differs slightly from that of the authors named above.
Keywords: miniscule representation, universal torsor
Mots-clés : del Pezzo surface, Mumford quotient.
@article{IM2_2010_74_5_a0,
     author = {V. S. Zhgoon},
     title = {On embeddings of universal torsors over {del~Pezzo} surfaces in cones over flag varieties},
     journal = {Izvestiya. Mathematics },
     pages = {883--923},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a0/}
}
TY  - JOUR
AU  - V. S. Zhgoon
TI  - On embeddings of universal torsors over del~Pezzo surfaces in cones over flag varieties
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 883
EP  - 923
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a0/
LA  - en
ID  - IM2_2010_74_5_a0
ER  - 
%0 Journal Article
%A V. S. Zhgoon
%T On embeddings of universal torsors over del~Pezzo surfaces in cones over flag varieties
%J Izvestiya. Mathematics 
%D 2010
%P 883-923
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a0/
%G en
%F IM2_2010_74_5_a0
V. S. Zhgoon. On embeddings of universal torsors over del~Pezzo surfaces in cones over flag varieties. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 883-923. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a0/

[1] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland, Amsterdam–London; Elsevier, New York, 1974 | MR | MR | Zbl | Zbl

[2] J.-L. Colliot-Thélène, J.-J. Sansuc, “La descente sur les variétés rationnelles. II”, Duke Math. J., 54:2 (1987), 375–492 | DOI | MR | Zbl

[3] V. V. Serganova, A. N. Skorobogatov, “Del Pezzo surfaces and representation theory”, Algebra Number Theory, 1:4 (2007), 393–419 | DOI | MR | Zbl

[4] V. V. Batyrev, O. N. Popov, “The Cox ring of a del Pezzo surface”, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, USA, 2002), Progr. Math., 226, Birkhäuser, Boston, MA, 2004, 85–103 | MR | Zbl

[5] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Schubert cells and cohomology of the spaces $G/P$”, Russian Math. Surveys, 28:1 (1973), 1–26 | DOI | MR | Zbl | Zbl

[6] V. S. Zhgoon, “Variation of Mumford quotients by torus actions on full flag varieties. I”, Izv. Math., 71:6 (2007), 1105–1122 | DOI | MR | Zbl

[7] B. G. Moǐšezon, “The Castelnuovo–Enriques contraction theorem for arbitrary dimension”, Math. USSR-Izv., 3:5 (1969), 917–966 | DOI | MR | Zbl | Zbl

[8] F. Knop, H. Kraft, Th. Vust, “The Picard group of a $G$-variety”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 77–87 | MR | Zbl

[9] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer-Verlag, Berlin, 1982, 34–71 | DOI | MR | Zbl

[10] A. N. Skorobogatov, “On a theorem of Enriques–Swinnerton–Dyer”, Ann. Fac. Sci. Toulouse Math. (6), 2:3 (1993), 429–440 | MR | Zbl

[11] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | MR | Zbl | Zbl

[12] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, 1984 | MR | MR | Zbl | Zbl

[13] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl