Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_5_a0, author = {V. S. Zhgoon}, title = {On embeddings of universal torsors over {del~Pezzo} surfaces in cones over flag varieties}, journal = {Izvestiya. Mathematics }, pages = {883--923}, publisher = {mathdoc}, volume = {74}, number = {5}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a0/} }
V. S. Zhgoon. On embeddings of universal torsors over del~Pezzo surfaces in cones over flag varieties. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 883-923. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a0/
[1] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland, Amsterdam–London; Elsevier, New York, 1974 | MR | MR | Zbl | Zbl
[2] J.-L. Colliot-Thélène, J.-J. Sansuc, “La descente sur les variétés rationnelles. II”, Duke Math. J., 54:2 (1987), 375–492 | DOI | MR | Zbl
[3] V. V. Serganova, A. N. Skorobogatov, “Del Pezzo surfaces and representation theory”, Algebra Number Theory, 1:4 (2007), 393–419 | DOI | MR | Zbl
[4] V. V. Batyrev, O. N. Popov, “The Cox ring of a del Pezzo surface”, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, USA, 2002), Progr. Math., 226, Birkhäuser, Boston, MA, 2004, 85–103 | MR | Zbl
[5] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Schubert cells and cohomology of the spaces $G/P$”, Russian Math. Surveys, 28:1 (1973), 1–26 | DOI | MR | Zbl | Zbl
[6] V. S. Zhgoon, “Variation of Mumford quotients by torus actions on full flag varieties. I”, Izv. Math., 71:6 (2007), 1105–1122 | DOI | MR | Zbl
[7] B. G. Moǐšezon, “The Castelnuovo–Enriques contraction theorem for arbitrary dimension”, Math. USSR-Izv., 3:5 (1969), 917–966 | DOI | MR | Zbl | Zbl
[8] F. Knop, H. Kraft, Th. Vust, “The Picard group of a $G$-variety”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 77–87 | MR | Zbl
[9] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer-Verlag, Berlin, 1982, 34–71 | DOI | MR | Zbl
[10] A. N. Skorobogatov, “On a theorem of Enriques–Swinnerton–Dyer”, Ann. Fac. Sci. Toulouse Math. (6), 2:3 (1993), 429–440 | MR | Zbl
[11] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | MR | Zbl | Zbl
[12] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, 1984 | MR | MR | Zbl | Zbl
[13] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl