On properties of the space of quantum states and their
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 849-882.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider infinite-dimensional versions of the notions of the convex hull and convex roof of a function defined on the set of quantum states. We obtain sufficient conditions for the coincidence and continuity of restrictions of different convex hulls of a given lower semicontinuous function to the subset of states with bounded mean generalized energy (an affine lower semicontinuous non-negative function). These results are used to justify an infinite-dimensional generalization of the convex roof construction of entanglement monotones that is widely used in finite dimensions. We give several examples of entanglement monotones produced by the generalized convex roof construction. In particular, we consider an infinite-dimensional generalization of the notion of Entanglement of Formation and study its properties.
Keywords: convex hull and convex roof of a function, quantum state
Mots-clés : entanglement monotone, entanglement of formation.
@article{IM2_2010_74_4_a9,
     author = {M. E. Shirokov},
     title = {On properties of the space of quantum states and their},
     journal = {Izvestiya. Mathematics },
     pages = {849--882},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On properties of the space of quantum states and their
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 849
EP  - 882
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/
LA  - en
ID  - IM2_2010_74_4_a9
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On properties of the space of quantum states and their
%J Izvestiya. Mathematics 
%D 2010
%P 849-882
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/
%G en
%F IM2_2010_74_4_a9
M. E. Shirokov. On properties of the space of quantum states and their. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 849-882. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/

[1] A. Uhlmann, Entropy and optimal decompositions of states relative to a maximal commutative subalgebra, arXiv: quant-ph/9704017

[2] G. Vidal, “Entanglement monotones”, J. Modern Opt., 47:2–3 (2000), 355–376 | DOI | MR

[3] M. B. Plenio, S. Virmani, “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1–2 (2007), 1–51, arXiv: quant-ph/0504163 | MR | Zbl

[4] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2006), 86–98 | DOI | MR | Zbl

[5] M. E. Shirokov, Properties of probability measures on the set of quantum states and their applications, arXiv: arXiv:math-ph/0607019

[6] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002

[7] Ch. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, “Mixed-state entanglement and quantum error correction”, Phys. Rev. A (3), 54:3 (1996), 3824–3851 | DOI | MR

[8] J. Eisert, Ch. Simon, M. B. Plenio, “On the quantification of entanglement in infinite-dimensional quantum systems”, J. Phys. A, 35:17 (2002), 3911–3923 | DOI | MR | Zbl

[9] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001 | MR | Zbl

[10] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004 | Zbl

[11] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York–London, 1967 | MR | Zbl

[12] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[13] M. E. Shirokov, “On the strong CE-property of convex sets”, Math. Notes, 82:3–4 (2007), 395–409 | DOI | MR | Zbl

[14] A. S. Kholevo, M. E. Shirokov, R. F. Werner, “On the notion of entanglement in Hilbert spaces”, Russian Math. Surveys, 60:2 (2005), 359–360 | DOI | MR | Zbl

[15] V. Yu. Protasov, M. E. Shirokov, “Generalized compactness in linear spaces and its applications”, Sb. Math., 200:5 (2009), 697–722 | DOI | MR | Zbl

[16] R. C. O'Brien, “On the openness of the barycentre map”, Math. Ann., 223:3 (1976), 207–212 | DOI | MR | Zbl

[17] S. Papadopoulou, “On the geometry of stable compact convex sets”, Math. Ann., 229:3 (1977), 193–200 | DOI | MR | Zbl

[18] R. Grza̧ślewicz, “Extreme continuous function property”, Acta Math. Hungar., 74:1–2 (1997), 93–99 | DOI | MR | Zbl

[19] P. Ressel, “Some continuity and measurability results on spaces of measures”, Math. Scand., 40:1 (1977), 69–78 | MR | Zbl

[20] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006 | Zbl

[21] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[22] E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[23] M. E. Shirokov, “Characterization of convex $\mu$-compact sets”, Russian Math. Surveys, 63:5 (2008), 981–982 | DOI | MR | Zbl

[24] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney, 1968 | MR | MR | Zbl

[25] M. E. Shirokov, “On properties of quantum channels related to their classical capacity”, Theory Probab. Appl., 52:2 (2007), 250–276 | DOI | Zbl

[26] M. E. Shirokov, “Entropy characteristics of subsets of states. I”, Izv. Math., 70:6 (2006), 1265–1292 | DOI | MR | Zbl

[27] J. Eisert, Entanglement in quantum information theory, arXiv: quant-ph/0610253

[28] M. Ozawa, “Conditional probability and a posteriori states in quantum mechanics”, Publ. Res. Inst. Math. Sci., 21:2 (1985), 279–295 | DOI | MR | Zbl

[29] N. N. Vakhaniya, V. I. Tarieladze, “Covariance operators of probability measures in locally convex spaces”, Theory Probab. Appl., 23:1 (1978), 1–21 | DOI | MR | Zbl | Zbl

[30] T. J. Osborne, “Convex hulls of varieties and entanglement measures based on the roof construction”, Quantum Inf. Comput., 7:3 (2007), 209–227 | MR | Zbl

[31] P. Rungta, C. M. Caves, “Concurrence-based entanglement measures for isotropic states”, Phys. Rev. A, 67:1 (2003), 012307/1-9 | DOI

[32] M. E. Shirokov, “Continuity of the von Neumann entropy”, Commun. Math. Phys., 296:3 (2010), 625–654 ; arXiv: 0904.1963 | DOI | Zbl

[33] F. V. Gusejnov, “Jensen's inequality”, Math. Notes, 41:6 (1987), 452–458 | DOI | MR | Zbl | Zbl