On properties of the space of quantum states and their
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 849-882

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider infinite-dimensional versions of the notions of the convex hull and convex roof of a function defined on the set of quantum states. We obtain sufficient conditions for the coincidence and continuity of restrictions of different convex hulls of a given lower semicontinuous function to the subset of states with bounded mean generalized energy (an affine lower semicontinuous non-negative function). These results are used to justify an infinite-dimensional generalization of the convex roof construction of entanglement monotones that is widely used in finite dimensions. We give several examples of entanglement monotones produced by the generalized convex roof construction. In particular, we consider an infinite-dimensional generalization of the notion of Entanglement of Formation and study its properties.
Keywords: convex hull and convex roof of a function, quantum state
Mots-clés : entanglement monotone, entanglement of formation.
@article{IM2_2010_74_4_a9,
     author = {M. E. Shirokov},
     title = {On properties of the space of quantum states and their},
     journal = {Izvestiya. Mathematics },
     pages = {849--882},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On properties of the space of quantum states and their
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 849
EP  - 882
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/
LA  - en
ID  - IM2_2010_74_4_a9
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On properties of the space of quantum states and their
%J Izvestiya. Mathematics 
%D 2010
%P 849-882
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/
%G en
%F IM2_2010_74_4_a9
M. E. Shirokov. On properties of the space of quantum states and their. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 849-882. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a9/