Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 819-848
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the classes of multiple Haar and Walsh series with at most
polynomial growth of the rectangular partial sums. In terms of the
Hausdorff $p$-measure, we find a sufficient condition (a criterion
for the multiple Haar series) for a given set to be a $U$-set for
series in the given class. We solve the recovery problem for the
coefficients of the series in this class converging outside
a uniqueness set. A Bari-type theorem is proved for the relative
uniqueness sets for multiple Haar series. For one-dimensional Haar
series, we get a criterion for a given set to be a $U$-set under
certain assumptions that generalize the Arutyunyan–Talalyan conditions.
We study the problem of describing those Cantor-type sets that are
relative uniqueness sets for Haar series.
Keywords:
Haar series, Walsh series, uniqueness set.
Mots-clés : dyadic group
Mots-clés : dyadic group
@article{IM2_2010_74_4_a8,
author = {M. G. Plotnikov},
title = {Quasi-measures, {Hausdorff} $p$-measures and {Walsh} and {Haar} series},
journal = {Izvestiya. Mathematics },
pages = {819--848},
publisher = {mathdoc},
volume = {74},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/}
}
M. G. Plotnikov. Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 819-848. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/