Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 819-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the classes of multiple Haar and Walsh series with at most polynomial growth of the rectangular partial sums. In terms of the Hausdorff $p$-measure, we find a sufficient condition (a criterion for the multiple Haar series) for a given set to be a $U$-set for series in the given class. We solve the recovery problem for the coefficients of the series in this class converging outside a uniqueness set. A Bari-type theorem is proved for the relative uniqueness sets for multiple Haar series. For one-dimensional Haar series, we get a criterion for a given set to be a $U$-set under certain assumptions that generalize the Arutyunyan–Talalyan conditions. We study the problem of describing those Cantor-type sets that are relative uniqueness sets for Haar series.
Keywords: Haar series, Walsh series, uniqueness set.
Mots-clés : dyadic group
@article{IM2_2010_74_4_a8,
     author = {M. G. Plotnikov},
     title = {Quasi-measures, {Hausdorff} $p$-measures and {Walsh} and {Haar} series},
     journal = {Izvestiya. Mathematics },
     pages = {819--848},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 819
EP  - 848
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/
LA  - en
ID  - IM2_2010_74_4_a8
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series
%J Izvestiya. Mathematics 
%D 2010
%P 819-848
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/
%G en
%F IM2_2010_74_4_a8
M. G. Plotnikov. Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 819-848. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/

[1] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Math. Ann., 5:1 (1872), 123–132 | DOI | MR | Zbl

[2] N. K. Bary, A treatise on trigonometric series, vols. I, II, Pergamon Press, Oxford, 1964 | MR | MR | Zbl

[3] A. Zygmund, Trigonometric series, v. I, II, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl

[4] F. G. Arutyunyan, A. A. Talalyan, “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl

[5] M. B. Petrovskaya, “Nekotorye teoremy edinstvennosti dlya ryadov po sisteme Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 5, 15–28 | MR | Zbl

[6] V. A. Skvortsov, “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 5, 3–6 | MR | Zbl

[7] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Jahresber. Deutsch. Math.-Ver., 19 (1910), 104–112 | Zbl

[8] G. M. Mushegyan, “O mnozhestvakh edinstvennosti dlya sistemy Khaara”, Izv. AN ArmSSR. Ser. matematika, 2:6 (1967), 350–361 | MR | Zbl

[9] V. A. Skvortsov, “Uniqueness sets for multiple Haar series”, Math. Notes, 14:6 (1973), 1011–1016 | DOI | MR | Zbl

[10] M. G. Plotnikov, “Uniqueness for multiple Haar series”, Sb. Math., 196:2 (2005), 243–261 | DOI | MR | Zbl

[11] W. R. Wade, “Sets of uniqueness for Haar series”, Acta Math. Acad. Sci. Hungar., 30:3–4 (1977), 265–281 | DOI | MR | Zbl

[12] J. R. McLaughlin, J. J. Price, “Comparison of Haar series with gaps with trigonometric series”, Pacific J. Math., 28:3 (1969), 623–627 | MR | Zbl

[13] M. G. Plotnikov, “Uniqueness questions for some classes of Haar series”, Math. Notes, 75:3–4 (2004), 360–371 | DOI | MR | Zbl

[14] V. L. Shapiro, “$U(\varepsilon)$-sets for Walsh series”, Proc. Amer. Math. Soc., 16 (1965), 867–870 | DOI | MR | Zbl

[15] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[16] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl

[17] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger Publ., Bristol–New York, 1990 | MR | Zbl

[18] K. M. Ostaszewski, “Henstock integration in the plane”, Mem. Amer. Math. Soc., 63, no. 353, Amer. Math. Soc., Providence, RI, 1986, 1–106 | MR | Zbl

[19] W. R. Wade, K. Yoneda, “Uniqueness and quasi-measure on the group of integers of $p$-series field”, Proc. Amer. Math. Soc., 84:2 (1982), 202–206 | DOI | MR | Zbl

[20] V. A. Skvortsov, A. A. Talalyan, “Some uniqueness questions of multiple Haar and trigonometric series”, Math. Notes, 46:2 (1989), 646–653 | DOI | MR | Zbl | Zbl

[21] Ya. B. Pesin, Teoriya razmernosti i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002

[22] K. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, Chichester, 1990 | MR | Zbl

[23] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl

[24] M. G. Plotnikov, “On multiple Walsh series convergent over cubes”, Izv. Math., 71:1 (2007), 57–73 | DOI | MR | Zbl

[25] M. G. Plotnikov, “On uniqueness sets for multiple Walsh series”, Math. Notes, 81:1–2 (2007), 234–246 | DOI | MR | Zbl

[26] F. Hausdorff, Mengenlehre, de Gruyter, Berlin–Leipzig, 1927 | MR | Zbl

[27] N. K. Bari, “Sur l'unicite du developpement trigonometrique”, Fundamenta Mathematicae (Warszawa), 9 (1927), 62–118

[28] N. K. Bari, “Problema edinstvennosti razlozheniya funktsii v trigonometricheskii ryad”, UMN, 4:3 (1949), 3–68 | MR | Zbl

[29] W. R. Wade, “Summing closed $U$-set for Walsh series”, Proc. Amer. Math. Soc., 29:1 (1971), 123–125 | DOI | MR | Zbl

[30] N. N. Kholshchevnikova, “Union of sets of uniqueness for multiple Walsh and multiple trigonometric series”, Sb. Math., 193:4 (2002), 609–633 | DOI | MR | Zbl

[31] S. F. Lukomskii, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl

[32] M. G. Plotnikov, “Violation of the uniqueness for two-dimensional Haar series”, Moscow Univ. Math. Bull., 58:4 (2003), 16–19 | MR | Zbl

[33] V. A. Skvorcov, “Calculation of the coefficients of an everywhere convergent Haar series”, Math. USSR-Sb., 4:3 (1968), 317–327 | DOI | MR | Zbl

[34] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[35] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[36] V. A. Skvorcov, “Differentiation with respect to nets and the Haar series”, Math. Notes, 4:1 (1968), 509–513 | DOI | MR | Zbl

[37] A. A. Shneider, “O edinstvennosti razlozhenii po sisteme funktsii Uolsha”, Matem. sb., 24(66):2 (1949), 279–300 | MR | Zbl

[38] V. Skvortsov, “Henstock–Kurzweil type integrals in $P$-adic harmonic analysis”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20:2 (2004), 207–224 | MR | Zbl