Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_4_a8, author = {M. G. Plotnikov}, title = {Quasi-measures, {Hausdorff} $p$-measures and {Walsh} and {Haar} series}, journal = {Izvestiya. Mathematics }, pages = {819--848}, publisher = {mathdoc}, volume = {74}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/} }
M. G. Plotnikov. Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 819-848. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a8/
[1] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Math. Ann., 5:1 (1872), 123–132 | DOI | MR | Zbl
[2] N. K. Bary, A treatise on trigonometric series, vols. I, II, Pergamon Press, Oxford, 1964 | MR | MR | Zbl
[3] A. Zygmund, Trigonometric series, v. I, II, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl
[4] F. G. Arutyunyan, A. A. Talalyan, “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl
[5] M. B. Petrovskaya, “Nekotorye teoremy edinstvennosti dlya ryadov po sisteme Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 5, 15–28 | MR | Zbl
[6] V. A. Skvortsov, “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 5, 3–6 | MR | Zbl
[7] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Jahresber. Deutsch. Math.-Ver., 19 (1910), 104–112 | Zbl
[8] G. M. Mushegyan, “O mnozhestvakh edinstvennosti dlya sistemy Khaara”, Izv. AN ArmSSR. Ser. matematika, 2:6 (1967), 350–361 | MR | Zbl
[9] V. A. Skvortsov, “Uniqueness sets for multiple Haar series”, Math. Notes, 14:6 (1973), 1011–1016 | DOI | MR | Zbl
[10] M. G. Plotnikov, “Uniqueness for multiple Haar series”, Sb. Math., 196:2 (2005), 243–261 | DOI | MR | Zbl
[11] W. R. Wade, “Sets of uniqueness for Haar series”, Acta Math. Acad. Sci. Hungar., 30:3–4 (1977), 265–281 | DOI | MR | Zbl
[12] J. R. McLaughlin, J. J. Price, “Comparison of Haar series with gaps with trigonometric series”, Pacific J. Math., 28:3 (1969), 623–627 | MR | Zbl
[13] M. G. Plotnikov, “Uniqueness questions for some classes of Haar series”, Math. Notes, 75:3–4 (2004), 360–371 | DOI | MR | Zbl
[14] V. L. Shapiro, “$U(\varepsilon)$-sets for Walsh series”, Proc. Amer. Math. Soc., 16 (1965), 867–870 | DOI | MR | Zbl
[15] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[16] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl
[17] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger Publ., Bristol–New York, 1990 | MR | Zbl
[18] K. M. Ostaszewski, “Henstock integration in the plane”, Mem. Amer. Math. Soc., 63, no. 353, Amer. Math. Soc., Providence, RI, 1986, 1–106 | MR | Zbl
[19] W. R. Wade, K. Yoneda, “Uniqueness and quasi-measure on the group of integers of $p$-series field”, Proc. Amer. Math. Soc., 84:2 (1982), 202–206 | DOI | MR | Zbl
[20] V. A. Skvortsov, A. A. Talalyan, “Some uniqueness questions of multiple Haar and trigonometric series”, Math. Notes, 46:2 (1989), 646–653 | DOI | MR | Zbl | Zbl
[21] Ya. B. Pesin, Teoriya razmernosti i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002
[22] K. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, Chichester, 1990 | MR | Zbl
[23] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl
[24] M. G. Plotnikov, “On multiple Walsh series convergent over cubes”, Izv. Math., 71:1 (2007), 57–73 | DOI | MR | Zbl
[25] M. G. Plotnikov, “On uniqueness sets for multiple Walsh series”, Math. Notes, 81:1–2 (2007), 234–246 | DOI | MR | Zbl
[26] F. Hausdorff, Mengenlehre, de Gruyter, Berlin–Leipzig, 1927 | MR | Zbl
[27] N. K. Bari, “Sur l'unicite du developpement trigonometrique”, Fundamenta Mathematicae (Warszawa), 9 (1927), 62–118
[28] N. K. Bari, “Problema edinstvennosti razlozheniya funktsii v trigonometricheskii ryad”, UMN, 4:3 (1949), 3–68 | MR | Zbl
[29] W. R. Wade, “Summing closed $U$-set for Walsh series”, Proc. Amer. Math. Soc., 29:1 (1971), 123–125 | DOI | MR | Zbl
[30] N. N. Kholshchevnikova, “Union of sets of uniqueness for multiple Walsh and multiple trigonometric series”, Sb. Math., 193:4 (2002), 609–633 | DOI | MR | Zbl
[31] S. F. Lukomskii, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl
[32] M. G. Plotnikov, “Violation of the uniqueness for two-dimensional Haar series”, Moscow Univ. Math. Bull., 58:4 (2003), 16–19 | MR | Zbl
[33] V. A. Skvorcov, “Calculation of the coefficients of an everywhere convergent Haar series”, Math. USSR-Sb., 4:3 (1968), 317–327 | DOI | MR | Zbl
[34] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl
[35] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl
[36] V. A. Skvorcov, “Differentiation with respect to nets and the Haar series”, Math. Notes, 4:1 (1968), 509–513 | DOI | MR | Zbl
[37] A. A. Shneider, “O edinstvennosti razlozhenii po sisteme funktsii Uolsha”, Matem. sb., 24(66):2 (1949), 279–300 | MR | Zbl
[38] V. Skvortsov, “Henstock–Kurzweil type integrals in $P$-adic harmonic analysis”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20:2 (2004), 207–224 | MR | Zbl