Steiner symmetrization and the initial coefficients of univalent functions
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 735-742
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish the inequality $|a_1|^2-\operatorname{Re}a_1a_{-1}\ge
|a_1^*|^2-\operatorname{Re}a_1^*a_{-1}^*$ for the initial
coefficients of any function $f(z)=a_1z+a_0+{a_{-1}}/z+\dotsb$
meromorphic and univalent in the domain $D=\{z\colon |z|>1\}$,
where $a_1^*$ and $a_{-1}^*$ are the corresponding coefficients
in the expansion of the function $f^*(z)$ that maps the domain $D$
conformally and univalently onto the exterior of the result
of the Steiner symmetrization with respect to the real axis
of the complement of the set $f(D)$. The Pólya–Szegő
inequality $|a_1|\ge |a_1^*|$ is already known.
We describe some applications of our inequality
to functions of class $\Sigma$.
Keywords:
Steiner symmetrization, capacity of a set, univalent function, covering theorem.
@article{IM2_2010_74_4_a4,
author = {V. N. Dubinin},
title = {Steiner symmetrization and the initial coefficients of univalent functions},
journal = {Izvestiya. Mathematics },
pages = {735--742},
publisher = {mathdoc},
volume = {74},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a4/}
}
V. N. Dubinin. Steiner symmetrization and the initial coefficients of univalent functions. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 735-742. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a4/