Steiner symmetrization and the initial coefficients of univalent functions
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 735-742.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the inequality $|a_1|^2-\operatorname{Re}a_1a_{-1}\ge |a_1^*|^2-\operatorname{Re}a_1^*a_{-1}^*$ for the initial coefficients of any function $f(z)=a_1z+a_0+{a_{-1}}/z+\dotsb$ meromorphic and univalent in the domain $D=\{z\colon |z|>1\}$, where $a_1^*$ and $a_{-1}^*$ are the corresponding coefficients in the expansion of the function $f^*(z)$ that maps the domain $D$ conformally and univalently onto the exterior of the result of the Steiner symmetrization with respect to the real axis of the complement of the set $f(D)$. The Pólya–Szegő inequality $|a_1|\ge |a_1^*|$ is already known. We describe some applications of our inequality to functions of class $\Sigma$.
Keywords: Steiner symmetrization, capacity of a set, univalent function, covering theorem.
@article{IM2_2010_74_4_a4,
     author = {V. N. Dubinin},
     title = {Steiner symmetrization and the initial coefficients of univalent functions},
     journal = {Izvestiya. Mathematics },
     pages = {735--742},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Steiner symmetrization and the initial coefficients of univalent functions
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 735
EP  - 742
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a4/
LA  - en
ID  - IM2_2010_74_4_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Steiner symmetrization and the initial coefficients of univalent functions
%J Izvestiya. Mathematics 
%D 2010
%P 735-742
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a4/
%G en
%F IM2_2010_74_4_a4
V. N. Dubinin. Steiner symmetrization and the initial coefficients of univalent functions. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 735-742. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a4/

[1] G. Pólya, G. Szegő, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | MR | Zbl | Zbl

[2] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[3] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl

[4] M. Schiffer, “Appendix”: R. Courant, Dirichlet's Principle, conformal mapping, and minimal surfaces, Interscience Publ., New York, 1950 | MR | Zbl

[5] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[6] W. K. Hayman, Multivalent functions, Cambridge Univ. Press, Cambridge, 1958 | MR | MR | Zbl

[7] V. N. Dubinin, “Some properties of the reduced inner modulus”, Siberian Math. J., 35:4 (1994), 689–705 | DOI | MR | Zbl