On the massiveness of exceptional sets of the maximum modulus principle
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 723-734.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sets $E_{\nu}(f)=\{z\colon |f(z)|\geqslant \nu\}$ for $\nu>\nu_0(f):=\limsup_{z\to\partial D}|f(z)|$ in the disc $D=\{z\colon |z|1\}$, where $f(z)$, $z=x+iy$, are complex-valued functions defined on $D$ and having certain smoothness properties with respect to the real variables $x$ and $y$. We obtain estimates for some metric properties of the sets $E_{\nu}(f)$. For example, we prove that, if $\Delta f\in L_1(D)$, then the hyperbolic area of the set $E_\nu(f)$ cannot grow more rapidly than $\nu^{-1-o(1)}$ as $\nu\to 0$, where $o(1)$ is positive, and, if $f_{\bar{z}}\in L_2(D)$, then this area cannot grow more rapidly than $\nu^{-2-o(1)}$. The orders of these estimates with respect to $\nu$ are sharp.
Keywords: hyperbolic distance and area, capacity and potential, polyanalytic function, maximum modulus principle, Green's formulae.
@article{IM2_2010_74_4_a3,
     author = {V. I. Danchenko},
     title = {On the massiveness of exceptional sets of the maximum modulus principle},
     journal = {Izvestiya. Mathematics },
     pages = {723--734},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a3/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - On the massiveness of exceptional sets of the maximum modulus principle
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 723
EP  - 734
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a3/
LA  - en
ID  - IM2_2010_74_4_a3
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T On the massiveness of exceptional sets of the maximum modulus principle
%J Izvestiya. Mathematics 
%D 2010
%P 723-734
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a3/
%G en
%F IM2_2010_74_4_a3
V. I. Danchenko. On the massiveness of exceptional sets of the maximum modulus principle. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 723-734. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a3/

[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, NJ, 1967 | MR | MR | Zbl | Zbl

[3] W. K. Hayman, P. B. Kennedy, Subharmonic functions, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl

[4] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Macmillan, New York; Pergamon Press, Oxford, 1963 | MR | MR | Zbl | Zbl

[5] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, VEB, Berlin, 1967 | MR | MR | Zbl

[6] V. I. Danchenko, “Estimates of Green potentials. Applications”, Sb. Math., 194:1 (2003), 63–88 | DOI | MR | Zbl

[7] V. I. Danchenko, E. P. Dolzhenko, “On mean integral values of solutions of the generalized Cauchy–Riemann equations”, J. Math. Sci. (N. Y.), 145:5 (2007), 5188–5191 | DOI | MR | Zbl