@article{IM2_2010_74_4_a3,
author = {V. I. Danchenko},
title = {On the massiveness of exceptional sets of the maximum modulus principle},
journal = {Izvestiya. Mathematics},
pages = {723--734},
year = {2010},
volume = {74},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a3/}
}
V. I. Danchenko. On the massiveness of exceptional sets of the maximum modulus principle. Izvestiya. Mathematics, Tome 74 (2010) no. 4, pp. 723-734. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a3/
[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl
[2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, NJ, 1967 | MR | MR | Zbl | Zbl
[3] W. K. Hayman, P. B. Kennedy, Subharmonic functions, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl
[4] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Macmillan, New York; Pergamon Press, Oxford, 1963 | MR | MR | Zbl | Zbl
[5] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, VEB, Berlin, 1967 | MR | MR | Zbl
[6] V. I. Danchenko, “Estimates of Green potentials. Applications”, Sb. Math., 194:1 (2003), 63–88 | DOI | MR | Zbl
[7] V. I. Danchenko, E. P. Dolzhenko, “On mean integral values of solutions of the generalized Cauchy–Riemann equations”, J. Math. Sci. (N. Y.), 145:5 (2007), 5188–5191 | DOI | MR | Zbl