Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_4_a2, author = {V. V. Volchkov and Vit. V. Volchkov}, title = {On a problem of {Berenstein--Gay} and its generalizations}, journal = {Izvestiya. Mathematics }, pages = {691--721}, publisher = {mathdoc}, volume = {74}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a2/} }
V. V. Volchkov; Vit. V. Volchkov. On a problem of Berenstein--Gay and its generalizations. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 691-721. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a2/
[1] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl
[2] L. Hörmander, The analysis of linear partial differential operators, v. I, II, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | MR | MR | Zbl | Zbl
[3] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | MR | Zbl
[4] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | MR
[5] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:1 (1980), 593–621 | DOI | MR | Zbl
[6] M. El Harchaoui, “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complexe: Cas des deux boules”, J. Anal. Math., 67:1 (1995), 1–37 | DOI | MR | Zbl
[7] M. Berkani, M. El Harchaoui, R. Gay, “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternionique – cas des deux boules”, Complex Variables Theory Appl., 43:1 (2000), 29–57 | MR | Zbl
[8] V. V. Volchkov, Integral geometry and convolution equations, Kluwer, Dordrecht, 2003 | MR | Zbl
[9] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962 | MR | Zbl | Zbl
[10] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl
[11] V. V. Volchkov, “Functions with ball mean values equal to zero on compact two-point homogeneous spaces”, Sb. Math., 198:4 (2007), 465–490 | DOI | MR | Zbl
[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl
[13] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl
[14] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl
[15] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[16] V. V. Volchkov, “Local two-radii theorem in symmetric spaces”, Sb. Math., 198:11 (2007), 1553–1577 | DOI | MR | Zbl
[17] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: Group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl
[18] V. V. Volchkov, “Uniqueness theorems for solutions of the convolution equation on symmetric spaces”, Izv. Math., 70:6 (2006), 1077–1092 | DOI | MR | Zbl
[19] P. L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl
[20] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR | Zbl