On a problem of Berenstein--Gay and its generalizations
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 691-721.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a solution of the Berenstein–Gay problem on the local analogue of spectral analysis on Riemannian symmetric spaces $X$ of rank 1. The proof is based on constructing transmutation maps connected with eigenfunction expansions of the Laplace–Beltrami operator on $X$.
Keywords: spectral analysis, functions periodic on average, symmetric spaces.
@article{IM2_2010_74_4_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {On a problem of {Berenstein--Gay} and its generalizations},
     journal = {Izvestiya. Mathematics },
     pages = {691--721},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - On a problem of Berenstein--Gay and its generalizations
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 691
EP  - 721
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a2/
LA  - en
ID  - IM2_2010_74_4_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T On a problem of Berenstein--Gay and its generalizations
%J Izvestiya. Mathematics 
%D 2010
%P 691-721
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a2/
%G en
%F IM2_2010_74_4_a2
V. V. Volchkov; Vit. V. Volchkov. On a problem of Berenstein--Gay and its generalizations. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 691-721. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a2/

[1] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[2] L. Hörmander, The analysis of linear partial differential operators, v. I, II, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | MR | MR | Zbl | Zbl

[3] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | MR | Zbl

[4] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | MR

[5] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:1 (1980), 593–621 | DOI | MR | Zbl

[6] M. El Harchaoui, “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complexe: Cas des deux boules”, J. Anal. Math., 67:1 (1995), 1–37 | DOI | MR | Zbl

[7] M. Berkani, M. El Harchaoui, R. Gay, “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternionique – cas des deux boules”, Complex Variables Theory Appl., 43:1 (2000), 29–57 | MR | Zbl

[8] V. V. Volchkov, Integral geometry and convolution equations, Kluwer, Dordrecht, 2003 | MR | Zbl

[9] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962 | MR | Zbl | Zbl

[10] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[11] V. V. Volchkov, “Functions with ball mean values equal to zero on compact two-point homogeneous spaces”, Sb. Math., 198:4 (2007), 465–490 | DOI | MR | Zbl

[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[13] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[14] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl

[15] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[16] V. V. Volchkov, “Local two-radii theorem in symmetric spaces”, Sb. Math., 198:11 (2007), 1553–1577 | DOI | MR | Zbl

[17] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: Group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[18] V. V. Volchkov, “Uniqueness theorems for solutions of the convolution equation on symmetric spaces”, Izv. Math., 70:6 (2006), 1077–1092 | DOI | MR | Zbl

[19] P. L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[20] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR | Zbl