Extremal problems for integrals of non-negative functions
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 607-660.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the numbers $e_\sigma(f)$ that characterize the best approximation of the integrals of functions in $L_p(A,d\mu)$, $p>0$, by integrals of rank $\sigma$. We find exact values and orders as $\sigma\to\infty$ for the least upper bounds of these numbers on the classes of functions representable as products of a fixed non-negative function and functions in the unit ball $U_p(A)$ of $L_p(A,d\mu)$. The numbers $e_\sigma(\,\cdot\,)$ are used to obtain necessary and sufficient conditions for an arbitrary function in $L_p(A,d\mu)$ to lie in $L_s(A,d\mu)$, $0$. We discuss applications of the results obtained to the approximation of measurable functions (given by convolutions with summable kernels) by entire functions of exponential type.
Keywords: best approximations of integrals by integrals of finite rank, absolute convergence of integrals.
@article{IM2_2010_74_3_a7,
     author = {A. I. Stepanets and A. L. Shidlich},
     title = {Extremal problems for integrals of non-negative functions},
     journal = {Izvestiya. Mathematics },
     pages = {607--660},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a7/}
}
TY  - JOUR
AU  - A. I. Stepanets
AU  - A. L. Shidlich
TI  - Extremal problems for integrals of non-negative functions
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 607
EP  - 660
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a7/
LA  - en
ID  - IM2_2010_74_3_a7
ER  - 
%0 Journal Article
%A A. I. Stepanets
%A A. L. Shidlich
%T Extremal problems for integrals of non-negative functions
%J Izvestiya. Mathematics 
%D 2010
%P 607-660
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a7/
%G en
%F IM2_2010_74_3_a7
A. I. Stepanets; A. L. Shidlich. Extremal problems for integrals of non-negative functions. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 607-660. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a7/

[1] A. I. Stepanets, “Extremal problems of approximation theory in linear spaces”, Ukrainian Math. J., 55:10 (2003), 1662–1698 | DOI | MR | Zbl

[2] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl

[3] R. S. Ismagilov, “Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials”, Russian Math. Surveys, 29:3 (1974), 169–186 | DOI | MR | Zbl

[4] B. S. Kashin, “Lower bounds for $n$-term approximations”, Math. Notes, 70:3–4 (2001), 574–576 | DOI | MR | Zbl

[5] B. S. Kashin, “On approximation properties of complete orthonormal systems”, Proc. Steklov Inst. Math., 172 (1987), 207–211 | MR | Zbl | Zbl

[6] V. E. Majorov, “On linear diameters of Sobolev classes”, Soviet Math. Dokl., 19:6 (1978), 1491–1494 | MR | Zbl

[7] V. E. Maǐorov, “On linear widths of Sobolev classes and chains of extremal subspaces”, Math. USSR-Sb., 41:3 (1982), 361–382 | DOI | MR | Zbl | Zbl

[8] Éh. S. Belinskij, “Approximation of periodic functions of several variables by a “floating” system of exponentials, and trigonometric widths”, Soviet Math. Dokl., 32:2 (1985), 571–574 | MR | Zbl

[9] È. S. Belinskiǐ, “Approximation by a “floating” system of exponentials on classes of smooth periodic functions”, Math. USSR-Sb., 60:1 (1988), 19–27 | DOI | MR | Zbl | Zbl

[10] E. S. Belinskii, “Priblizhenie periodicheskikh funktsii mnogikh peremennykh “plavayuschei” sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issledovanie po teorii funktsii mnogikh veschestvennykh peremennykh, Izd-vo Yaroslav. un-ta, Yaroslavl, 1988, 16–33 | MR

[11] A. S. Romanyuk, “Best trigonometric and bilinear approximations of functions of several variables from the classes $B_{p,\theta}^r$. I”, Ukrainian Math. J., 44:11 (1992), 1411–1424 | DOI | MR | Zbl

[12] A. S. Romanyuk, “The best trigonometric and bilinear approximations for functions of many variables from the classes $B_{p,\theta}^r$. II”, Ukrainian Math. J., 45:10 (1993), 1583–1597 | DOI | MR | Zbl

[13] A. S. Romanyuk, “Best trigonometric and bilinear approximations for the Besov classes of functions of many variables”, Ukrainian Math. J., 47:8 (1995), 1253–1270 | DOI | MR | Zbl

[14] A. I. Stepanets, “Approximation characteristics of spaces $S^p_\varphi$”, Ukrainian Math. J., 53:3 (2001), 446–475 | DOI | MR | Zbl

[15] A. I. Stepanets, “Approximation characteristics of the spaces $S^p_\varphi$ in different metrics”, Ukrainian Math. J., 53:8 (2001), 1340–1374 | DOI | MR | Zbl

[16] A. I. Stepanets, Metody teorii priblizhenii. II, Tr. In-ta matematiki NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl

[17] V. N. Temlyakov, “On the approximation of periodic functions of several variables”, Soviet Math. Dokl., 30:3 (1984), 659–662 | MR | Zbl

[18] V. N. Temlyakov, Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN SSSR, 178, Nauka, M., 1986 | MR | Zbl

[19] V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Science Publ., Commack, NY, 1993 | MR | Zbl

[20] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl

[21] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1970 | MR

[22] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matematiki NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl

[23] A. I. Stepanets, “Several statements for convex functions”, Ukrainian Math. J., 51:5 (1999), 764–780 | DOI | MR | Zbl

[24] A. I. Stepanets, Klassifikatsiya i priblizhenie periodicheskikh funktsii, Naukova dumka, Kiev, 1987 | MR | Zbl

[25] A. I. Stepanets, A. L. Shidlich, “Ob odnom kriterii dlya vypuklykh funktsii”, Dokl. NAN Ukrainy, 2007, no. 8, 31–36 | Zbl

[26] L. B. Sofman, “Diameters of octahedra”, Math. Notes, 5:4 (1969), 258–262 | DOI | MR | Zbl

[27] L. B. Sofman, “Diameters of an infinite-dimensional octahedron”, Moscow Univ. Math. Bull., 28:5 (1974), 45–47 | MR | Zbl | Zbl

[28] F. Gensun, Q. Lixin, “Approximation characteristics for diagonal operators in different computational settings”, J. Approxim. Theory, 140:2 (2006), 178–190 | DOI | MR | Zbl

[29] A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[30] A. I. Stepanets', A. L. Shydlich, “On one extremal problem for positive series”, Ukrainian Math. J., 57:12 (2005), 1968–1976 | DOI | MR | Zbl

[31] V. I. Kolyada, “Mixed norms and Sobolev type inequalities”, Approximation and probability (Bedlewo, Poland, 2004), Banach Center Publ., 72, Polish Acad. Sci., Warsaw, 2006, 141–160 | MR | Zbl

[32] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[33] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[34] A. I. Stepanets, A. L. Shidlich, “Ekstremalnye zadachi dlya integralov ot neotritsatelnykh funktsii”, Dokl. NAN Ukrainy, 2007, no. 3, 25–31 | Zbl

[35] A. I. Stepanets, A. L. Shidlich, Ekstremalnye zadachi dlya integralov ot neotritsatelnykh funktsii, Preprint No 2007.2, In-t matem. NAN Ukrainy, Kiev, 2007