A family of categories of log terminal pairs and automorphisms of surfaces
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 541-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

Building upon two-dimensional log terminal Mori theory, we develop categorical techniques that enable us to describe groups of biregular automorphisms of a complex quasi-projective surface with log terminal singularities using the biregular automorphism groups of its compactifications.
Keywords: categories, biregular automorphisms, links, log terminal singularities
Mots-clés : birational maps, Ore condition.
@article{IM2_2010_74_3_a5,
     author = {Yu. M. Polyakova},
     title = {A family of categories of log terminal pairs and automorphisms of surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {541--593},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a5/}
}
TY  - JOUR
AU  - Yu. M. Polyakova
TI  - A family of categories of log terminal pairs and automorphisms of surfaces
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 541
EP  - 593
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a5/
LA  - en
ID  - IM2_2010_74_3_a5
ER  - 
%0 Journal Article
%A Yu. M. Polyakova
%T A family of categories of log terminal pairs and automorphisms of surfaces
%J Izvestiya. Mathematics 
%D 2010
%P 541-593
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a5/
%G en
%F IM2_2010_74_3_a5
Yu. M. Polyakova. A family of categories of log terminal pairs and automorphisms of surfaces. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 541-593. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a5/

[1] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[2] V. A. Iskovskikh, “Factorization of birational maps of rational surfaces from the viewpoint of Mori theory”, Russian Math. Surveys, 51:4 (1996), 585–652 | DOI | MR | Zbl

[3] A. Bruno, K. Matsuki, “Log Sarkisov program”, Internat. J. Math., 8:4 (1997), 451–494 | DOI | MR | Zbl

[4] M. H. Gizatullin, “Quasihomogeneous affine surfaces”, Math. USSR-Izv., 5:5 (1971), 1057–1081 | DOI | MR | Zbl | Zbl

[5] M. H. Gizatullin, “Invariants of incomplete algebraic surfaces obtained by completions”, Math. USSR-Izv., 5:3 (1971), 503–515 | DOI | MR | Zbl | Zbl

[6] M. H. Gizatullin, “Affine surfaces which are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 5:4 (1971), 754–769 | DOI | MR | Zbl | Zbl

[7] M. H. Gizatullin, “On affine surfaces that can be completed by a nonsingular rational curve”, Math. USSR-Izv., 4:4 (1970), 787–810 | DOI | MR | Zbl | Zbl

[8] M. H. Gizatullin, V. I. Danilov, “Automorphisms of affine surfaces. I”, Math. USSR-Izv., 9:3 (1975), 493–534 | DOI | MR | Zbl | Zbl

[9] M. H. Gizatullin, V. I. Danilov, “Automorphisms of affine surfaces. II”, Math. USSR-Izv., 11:1 (1977), 51–98 | DOI | MR | Zbl | Zbl

[10] Zh. P. Serr, “Derevya, amalgamy i $\mathrm{SL}_2$”, Matematika, 18:1 (1974), 3–51 | Zbl

[11] A. Dubouloz, S. Lamy, Variations on log Sarkisov program for surfaces, arXiv: 0802.2441

[12] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl

[13] Yu. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR | Zbl