Joint universality of zeta-functions with periodic coefficients
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 515-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a joint universality theorem of Voronin type for a set of functions consisting of periodic zeta-functions and periodic Hurwitz zeta-functions with algebraically independent parameters.
Keywords: periodic zeta-function, periodic Hurwitz zeta-function, limit theorem, joint universality.
@article{IM2_2010_74_3_a4,
     author = {A. Laurin\v{c}ikas},
     title = {Joint universality of zeta-functions with periodic coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {515--539},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a4/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - Joint universality of zeta-functions with periodic coefficients
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 515
EP  - 539
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a4/
LA  - en
ID  - IM2_2010_74_3_a4
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T Joint universality of zeta-functions with periodic coefficients
%J Izvestiya. Mathematics 
%D 2010
%P 515-539
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a4/
%G en
%F IM2_2010_74_3_a4
A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 515-539. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a4/

[1] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl | Zbl

[2] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, de Gruyter, Berlin, 1992 | MR | MR | Zbl | Zbl

[3] S. M. Voronin, Izbrannye trudy: matematika, Izd-vo MGTU im. N. E. Baumana, M., 2006

[4] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[5] A. Laurinčikas, “The universality of zeta-functions”, Acta Appl. Math., 78:1–3 (2003), 251–271 | DOI | MR | Zbl

[6] K. Matsumoto, “Probabilistic value-distribution theory of zeta-functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR | Zbl

[7] K. Matsumoto, “An introduction to the value-distribution theory of zeta-functions”, Šiauliai Math. Semin., 1:9 (2006), 61–83 | MR | Zbl

[8] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[9] J. Steuding, Value-distribution of $L$-functions, Lectures Notes in Math., 1877, Springer-Verlag, Berlin–Heidelberg–New York, 2007 | DOI | MR | Zbl

[10] A. Laurinčikas, “The universality of the Lerch zeta-function”, Lithuanian Math. J., 37:3 (1997), 275–280 | DOI | MR | Zbl

[11] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | MR | Zbl

[12] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. Thesis, Universality of Michigan, 1979

[13] B. Bagchi, The statistical behaviour and universality properties of the Riemann zetafunction and allied Dirichlet serie, Thesis, Indian Stat. Inst., Calcutta, 1981

[14] B. Bagchi, “Joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181:3 (1982), 319–334 | DOI | MR | Zbl

[15] A. Laurinčikas, D. Šiaučiūnas, “Remarks on the universality of the periodic zeta function”, Math. Notes, 80:3–4 (2006), 532–538 | DOI | MR | Zbl

[16] A. Javtokas, A. Laurinčikas, “On the periodic Hurwitz zeta-function”, Hardy-Ramanujan J., 29 (2006), 18–36 | MR | Zbl

[17] A. Javtokas, A. Laurinčikas, “The universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl

[18] A. Laurinčikas, R. Macaitiene, “On the joint universality of periodic zeta functions”, Math. Notes, 85:1–2 (2009), 51–60 | DOI | MR | Zbl

[19] A. Laurinčikas, “The joint universality for periodic Hurwitz zeta-functions”, Analysis (Munich), 26:3 (2006), 419–428 | DOI | MR | Zbl

[20] A. Laurinčikas, “Voronin-type theorem for periodic Hurwitz zeta-functions”, Sb. Math., 198:2 (2007), 231–242 | DOI | MR | Zbl

[21] A. Javtokas, A. Laurinčikas, “A joint universality theorem for periodic Hurwitz zeta-functions”, Bull. Aust. Math. Soc., 78:1 (2008), 13–33 | DOI | MR | Zbl

[22] H. Mishou, “The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions”, Lithuanian Math. J., 47:1 (2007), 32–47 | DOI | MR | Zbl

[23] H. Heyer, Probability measures on locally compact groups, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | MR | Zbl | Zbl

[24] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney, 1968 | MR | MR | Zbl

[25] J. B. Conway, Functions of one complex variable, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[26] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, Wiley, New York–London–Sydney, 1967 | MR | Zbl | Zbl

[27] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc., Providence, RI, 1965 | MR | MR | Zbl | Zbl

[28] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75 | MR | Zbl

[29] E, C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1939 | MR | Zbl | Zbl