Spaces and maps of idempotent measures
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 481-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the weak* topologization of the set of all idempotent measures (Maslov measures) on compact Hausdorff spaces defines a functor on the category $\operatorname{\mathbf{Comp}}$ of compact Hausdorff spaces, and this functor is normal in the sense of E. V. Shchepin; in particular, it has many properties in common with the probability measure functor and the hyperspace functor. Moreover, we establish that this functor defines a monad in the category $\operatorname{\mathbf{Comp}}$, and prove that the idempotent measure monad contains the hyperspace monad as a submonad. For the space of idempotent measures there is an analogue of the Milyutin map (that is, of a continuous map of compact Hausdorff spaces which admits a regular averaging operator for spaces of continuous functions). Using the assertion of the existence of Milyutin maps for idempotent measures, we prove that the idempotent measure functor is open, that is, it preserves the class of open surjective maps. We also prove that, in contrast to the case of probability measure spaces, the correspondence assigning to any pair of idempotent measures the set of measures on their product which have the given marginals is not continuous.
Keywords: idempotent measure (Maslov measure), compact Hausdorff space, open map, Milyutin map, monad.
@article{IM2_2010_74_3_a2,
     author = {M. M. Zarichnyi},
     title = {Spaces and maps of idempotent measures},
     journal = {Izvestiya. Mathematics },
     pages = {481--499},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a2/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
TI  - Spaces and maps of idempotent measures
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 481
EP  - 499
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a2/
LA  - en
ID  - IM2_2010_74_3_a2
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%T Spaces and maps of idempotent measures
%J Izvestiya. Mathematics 
%D 2010
%P 481-499
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a2/
%G en
%F IM2_2010_74_3_a2
M. M. Zarichnyi. Spaces and maps of idempotent measures. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 481-499. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a2/

[1] G. L. Litvinov, V. P. Maslov (eds.), Idempotent mathematics and mathematical physics (Vienna, 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[2] G. L. Litvinov, “The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction”, Idempotent mathematics and mathematical physics (Vienna, 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 1–17, arXiv: abs/math/0501038 | MR | Zbl

[3] P. Bernhard, “Max-plus algebra and mathematical fear in dynamic optimization”, Set-Valued Anal., 8:1–2 (2000), 71–84 | DOI | MR | Zbl

[4] J. P. Aubin, O. Dordan, “Fuzzy systems, viability theory and toll sets”, Fuzzy systems, Handb. Fuzzy Sets Ser., 2, Kluwer Acad. Publ., Boston, MA, 1998, 461–488 | MR | Zbl

[5] J.-P. Aubin, Dynamic economic theory. A viability approach, Stud. Econom. Theory, 5, Springer-Verlag, Berlin, 1997 | MR | Zbl

[6] V. V. Fedorchuk, “Probability measures in topology”, Russian Math. Surveys, 46:1 (1991), 45–93 | DOI | MR | Zbl

[7] E. V. Shchepin, “Functors and uncountable powers of compacta”, Russian Math. Surveys, 36:3 (1981), 1–71 | DOI | MR | Zbl | Zbl

[8] V. V. Fedorchuk, “Covariant functors in the category of compacta, absolute retracts, and $Q$-manifolds”, Russian Math. Surveys, 36:3 (1981), 211–233 | DOI | MR | Zbl

[9] T. Radul, “On the functor of order-preserving functionals”, Comment. Math. Univ. Carolin., 39:3 (1998), 609–615 | MR | Zbl

[10] S. Gaubert, R. D. Katz, “The Minkowski theorem for max-plus convex sets”, Linear Algebra Appl., 421:2–3 (2007), 356–369 | DOI | MR | Zbl

[11] T. Świrszcz, “Monadic functors and convexity”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 39–42 | MR | Zbl

[12] S. Z. Ditor, L. Q. Eifler, “Some open mapping theorems for measures”, Trans. Amer. Math. Soc., 164 (1972), 287–293 | DOI | MR | Zbl

[13] L. Q. Eifler, “Some open mapping theorems for marginals”, Trans. Amer. Math. Soc., 211 (1975), 311–319 | DOI | MR | Zbl

[14] M. Zarichnyi, On correspondences of probability measures with restricted marginals, Preprint http://129.3.20.41/eps/ge/papers/0210/0210006.pdf

[15] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotent functional analysis: an algebraic approach”, Math. Notes, 69:5–6 (2001), 696–729 | DOI | MR | Zbl

[16] V. P. Maslov, S. N. Samborskii (eds.), Idempotent analysis, Adv. Soviet Math., 13, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[17] M. Barr, Ch. Wells, Toposes, triples and theories, Grundlehren Math. Wiss., 278, Springer-Verlag, New York, 1985 | MR | Zbl

[18] M. M. Zarichnyi, “Absolute extensors and the geometry of multiplication of monads in the category of compacta”, Math. USSR-Sb., 71:4 (1993), 9–27 | DOI | MR | Zbl

[19] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.), 58, 1968 | MR | MR | Zbl | Zbl

[20] S. Ageev, E. D. Tymchatyn, “On exact atomless Milutin maps”, Topology Appl., 153:2–3 (2005), 227–238 | DOI | MR | Zbl

[21] R. Kozhan, “Open-multicommutativity of some functors related to the functor of probability measures”, Mat. Stud., 24:1 (2005), 99–106 | MR | Zbl

[22] O. Hubal, M. Zarichnyi, “Idempotent probability measures on ultrametric spaces”, J. Math. Anal. Appl., 343:2 (2008), 1052–1060 | DOI | MR | Zbl

[23] V. V. Fedorchuk, “On the barycentric mapping of probability measures”, Moscow Univ. Math. Bull., 47:1 (1992), 39–43 | MR | Zbl | Zbl

[24] L. Q. Eifler, “Openness of convex averaging”, Glasnik Mat. Ser. III, 12:1 (1977), 67–72 | MR | Zbl

[25] S. Papadopoulou, “On the geometry of stable compact convex sets”, Math. Ann., 229:3 (1977), 193–200 | DOI | MR | Zbl

[26] R. C. O'Brien, “On the openness of the barycentre map”, Math. Ann., 223:3 (1976), 207–212 | DOI | MR | Zbl

[27] V. V. Fedorchuk, “On barycentrically open bicompacta”, Siberian Math. J., 33:6 (1992), 1135–1139 | DOI | MR | Zbl | Zbl