Meromorphic extension of solutions of soliton equations
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 461-480

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local versions of the direct and inverse scattering transforms and describe their analytic properties, which are analogous to the properties of the classical Laplace and Borel transforms. This enables us to study local holomorphic solutions of those integrable equations on $\mathbb C^2_{xt}$ whose complexified forms are given by the zero curvature condition for connections of the form $U\,dx+V\,dt$, where $U$ is a linear function of the spectral parameter $z$ and $V$ is a polynomial of degree $m\geqslant2$ in $z$. We show that the local holomorphic Cauchy problem for such equations is soluble if and only if the scattering data of the initial condition belong to Gevrey class $1/m$. We also show that every local holomorphic solution extends to a global meromorphic function of $x$ for every fixed $t$.
Keywords: analytic continuation.
Mots-clés : soliton equations
@article{IM2_2010_74_3_a1,
     author = {A. V. Domrin},
     title = {Meromorphic extension of solutions of soliton equations},
     journal = {Izvestiya. Mathematics },
     pages = {461--480},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Meromorphic extension of solutions of soliton equations
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 461
EP  - 480
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/
LA  - en
ID  - IM2_2010_74_3_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Meromorphic extension of solutions of soliton equations
%J Izvestiya. Mathematics 
%D 2010
%P 461-480
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/
%G en
%F IM2_2010_74_3_a1
A. V. Domrin. Meromorphic extension of solutions of soliton equations. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 461-480. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/