Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_3_a1, author = {A. V. Domrin}, title = {Meromorphic extension of solutions of soliton equations}, journal = {Izvestiya. Mathematics }, pages = {461--480}, publisher = {mathdoc}, volume = {74}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/} }
A. V. Domrin. Meromorphic extension of solutions of soliton equations. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 461-480. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/
[1] E. Goursat, Cours d'analyse mathematique, Tome III. Intégrales infiniment voisines. Équations aux dérivées du second ordre. Équations intégrales. Calcul des variations, Gauthier-Villars, Paris, 1927 | MR | Zbl
[2] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR | Zbl
[3] D. V. Widder, The heat equation, Academic Press, New York–London, 1975 | MR | Zbl
[4] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons, Contemp. Soviet Math., Plenum, New York–London, 1984 | MR | MR | Zbl | Zbl
[5] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems. IV. Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 173–280 | MR | MR | Zbl | Zbl
[6] L. D. Faddeev, L. A. Takhtadzhyan, Hamiltonian methods in the theory of solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl
[7] V. E. Zakharov, A. B. Shabat, “Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II”, Functional Anal. Appl., 13:3 (1979), 166–174 | DOI | MR | Zbl
[8] I. M. Krichever, “An analogue of d'Alembert's formula for the equations of the principal chiral field and for the Sine-Gordon equation”, Soviet Math. Dokl., 22:1 (1980), 79–84 | MR | Zbl
[9] A. V. Domrin, “Remarks on the local version of the inverse scattering method”, Proc. Steklov Inst. Math., 253:1 (2006), 37–50 | DOI | MR
[10] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Functional Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[11] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, Dokl. AN SSSR, 78:4 (1951), 629–632 | MR | Zbl
[12] M. Ribarič, I. Vidav, “Analytic properties of the inverse $A(z)^{-1}$ of an analytic linear operator valued function $A(z)$”, Arch. Rational Mech. Anal., 32:4 (1969), 298–310 | DOI | MR | Zbl
[13] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[14] B. Chabat, Introduction á l'analyse complexe, T. 2. Fonctions de plusieurs variables, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | Zbl
[15] Ya. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl
[16] M. U. Schmidt, “Integrable systems and Riemann surfaces of infinite genus”, Memoirs Amer. Math. Soc., 122:581 (1996) | MR | Zbl
[17] A. V. Domrin, “The Riemann problem and matrix-valued potentials with a convergent Baker–Akhiezer function”, Theoret. and Math. Phys., 144:3 (2005), 1264–1278 | DOI | MR | Zbl
[18] A. Grothendieck, “La théorie de Fredholm”, Bull. Soc. Math. France, 84 (1956), 319–384 | MR | Zbl
[19] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl