Meromorphic extension of solutions of soliton equations
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 461-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local versions of the direct and inverse scattering transforms and describe their analytic properties, which are analogous to the properties of the classical Laplace and Borel transforms. This enables us to study local holomorphic solutions of those integrable equations on $\mathbb C^2_{xt}$ whose complexified forms are given by the zero curvature condition for connections of the form $U\,dx+V\,dt$, where $U$ is a linear function of the spectral parameter $z$ and $V$ is a polynomial of degree $m\geqslant2$ in $z$. We show that the local holomorphic Cauchy problem for such equations is soluble if and only if the scattering data of the initial condition belong to Gevrey class $1/m$. We also show that every local holomorphic solution extends to a global meromorphic function of $x$ for every fixed $t$.
Keywords: analytic continuation.
Mots-clés : soliton equations
@article{IM2_2010_74_3_a1,
     author = {A. V. Domrin},
     title = {Meromorphic extension of solutions of soliton equations},
     journal = {Izvestiya. Mathematics },
     pages = {461--480},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Meromorphic extension of solutions of soliton equations
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 461
EP  - 480
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/
LA  - en
ID  - IM2_2010_74_3_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Meromorphic extension of solutions of soliton equations
%J Izvestiya. Mathematics 
%D 2010
%P 461-480
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/
%G en
%F IM2_2010_74_3_a1
A. V. Domrin. Meromorphic extension of solutions of soliton equations. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 461-480. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a1/

[1] E. Goursat, Cours d'analyse mathematique, Tome III. Intégrales infiniment voisines. Équations aux dérivées du second ordre. Équations intégrales. Calcul des variations, Gauthier-Villars, Paris, 1927 | MR | Zbl

[2] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR | Zbl

[3] D. V. Widder, The heat equation, Academic Press, New York–London, 1975 | MR | Zbl

[4] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons, Contemp. Soviet Math., Plenum, New York–London, 1984 | MR | MR | Zbl | Zbl

[5] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems. IV. Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 173–280 | MR | MR | Zbl | Zbl

[6] L. D. Faddeev, L. A. Takhtadzhyan, Hamiltonian methods in the theory of solitons, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[7] V. E. Zakharov, A. B. Shabat, “Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II”, Functional Anal. Appl., 13:3 (1979), 166–174 | DOI | MR | Zbl

[8] I. M. Krichever, “An analogue of d'Alembert's formula for the equations of the principal chiral field and for the Sine-Gordon equation”, Soviet Math. Dokl., 22:1 (1980), 79–84 | MR | Zbl

[9] A. V. Domrin, “Remarks on the local version of the inverse scattering method”, Proc. Steklov Inst. Math., 253:1 (2006), 37–50 | DOI | MR

[10] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Functional Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[11] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, Dokl. AN SSSR, 78:4 (1951), 629–632 | MR | Zbl

[12] M. Ribarič, I. Vidav, “Analytic properties of the inverse $A(z)^{-1}$ of an analytic linear operator valued function $A(z)$”, Arch. Rational Mech. Anal., 32:4 (1969), 298–310 | DOI | MR | Zbl

[13] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[14] B. Chabat, Introduction á l'analyse complexe, T. 2. Fonctions de plusieurs variables, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | Zbl

[15] Ya. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[16] M. U. Schmidt, “Integrable systems and Riemann surfaces of infinite genus”, Memoirs Amer. Math. Soc., 122:581 (1996) | MR | Zbl

[17] A. V. Domrin, “The Riemann problem and matrix-valued potentials with a convergent Baker–Akhiezer function”, Theoret. and Math. Phys., 144:3 (2005), 1264–1278 | DOI | MR | Zbl

[18] A. Grothendieck, “La théorie de Fredholm”, Bull. Soc. Math. France, 84 (1956), 319–384 | MR | Zbl

[19] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl