Rationality of the Poincar\'e series in Arnold's local problems of analysis
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 411-438

Voir la notice de l'article provenant de la source Math-Net.Ru

For any smooth action of a Lie pseudo-group we construct a domain (in the corresponding infinite jet space) consisting of finitely many open sets (atoms) such that all points in each atom have the same rational Poincaré series. We also prove that these series can be calculated algorithmically.
Keywords: orbits of actions of diffeomorphism groups in jet spaces, Poincaré series of dimensions of orbits, rationality of a series.
Mots-clés : dimensions of orbits
@article{IM2_2010_74_2_a6,
     author = {R. A. Sarkisyan},
     title = {Rationality of the {Poincar\'e} series in {Arnold's} local problems of analysis},
     journal = {Izvestiya. Mathematics },
     pages = {411--438},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - Rationality of the Poincar\'e series in Arnold's local problems of analysis
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 411
EP  - 438
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/
LA  - en
ID  - IM2_2010_74_2_a6
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T Rationality of the Poincar\'e series in Arnold's local problems of analysis
%J Izvestiya. Mathematics 
%D 2010
%P 411-438
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/
%G en
%F IM2_2010_74_2_a6
R. A. Sarkisyan. Rationality of the Poincar\'e series in Arnold's local problems of analysis. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 411-438. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/