Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_2_a6, author = {R. A. Sarkisyan}, title = {Rationality of the {Poincar\'e} series in {Arnold's} local problems of analysis}, journal = {Izvestiya. Mathematics }, pages = {411--438}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/} }
R. A. Sarkisyan. Rationality of the Poincar\'e series in Arnold's local problems of analysis. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 411-438. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/
[1] V. I. Arnol'd, “Mathematical problems in classical physics”, Trends and perspectives in applied mathematics, Appl. Math. Sci., 100, Springer-Verlag, New York, 1994, 1–20 | MR | Zbl
[2] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl
[3] A. S. Shmelev, “On differential invariants of some differential geometric structures”, Proc. Steklov Inst. Math., 209 (1995), 203–234 | MR | Zbl
[4] A. S. Shmelev, “Functional moduli of jets of Riemannian metrics”, Funct. Anal. Appl., 31:2 (1997), 119–125 | DOI | MR | Zbl
[5] A. S. Shmelev, “Some properties of symplectic and hyper-Kählerian structures”, Russian Acad. Sci. Dokl. Math., 49:3 (1994), 511–514 | MR | Zbl
[6] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge Univ. Press, Cambridge, 1934 | Zbl
[7] J. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Math. Appl., 14, Gordon Breach, New York–London–Paris, 1978 | MR | MR | Zbl | Zbl
[8] S. Lie, Gesammelte Abhandlungen, Leipzig, Teubner, 1922 | MR | Zbl
[9] E. Cartan, {ØE}uvres complétes, Gauthier-Villars, Paris, 1952 | MR | Zbl
[10] Ch. Riquier, Les systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris, 1909 | Zbl
[11] Ch. Riquier, La méthode des fonctions majorantes et les systèmes d'équations aux dérivées partielles, Memorial Sci. Math. fasc. XXXII, Gauthier-Villars, Paris, 1928 | Zbl
[12] M. Janet, Les systèmes d'équations aux dérivées partielles, Memorial Sci. Math. fasc. XXI, Gauthier-Villars, Paris, 1927 | Zbl
[13] M. Janet, Équations aux dérivées partielles, Formulaire de Math., C.N.R.S., fasc. VII, 1956
[14] J. M. Thomas, Systems and roots, Byrd Press, Richmond, 1962 | Zbl
[15] J. F. Ritt, Differential algebra, Dover, New York, 1966 | MR | Zbl
[16] D. C. Spencer, “Overdetermined systems of linear partial differential equations”, Bull. Amer. Math. Soc., 75 (1969), 179–239 | DOI | MR | Zbl
[17] M. Kuranishi, Lectures on involutive systems of partial differential equations, Publ. Soc. Mat., Sao Paulo, 1967 | Zbl
[18] E. Kahler, Einfurung in die Theorie der Systeme von Differentialgleichungen, Teubner, Leipzig, 1934
[19] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior differential systems, Math. Sci. Res. Inst. Publ., 18, Springer-Verlag, New York, 1991 | MR | Zbl
[20] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Boston, MA, Birkhäuser, 1983 | MR | Zbl
[21] R. Bryant, Ph. Griffiths, L. Hsu, “Hyperbolic exterior differential systems and their conservation laws. Part I”, Selecta Math. (N.S.), 1:1 (1995), 21–112 | DOI | MR | Zbl
[22] R. Bryant, Ph. Griffiths, L. Hsu, “Hyperbolic exterior differential systems and their conservation laws. Part II”, Selecta Math. (N.S.), 1:2 (1995), 265–323 | DOI | MR | Zbl
[23] R. B. Gardner, The method of equivalence and its applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, SIAM, Philadelphia, PA, 1989 | MR | Zbl
[24] P. J. Olver, Equivalence, invariants, and symmetry, Cambrigde Univ. Press, Cambrigde, 1995 | MR | Zbl
[25] R. A. Sarkisyan, I. G. Shandra, “Regularity and Tresse's theorem for geometric structures”, Izv. Math., 72:2 (2008), 345–382 | DOI | MR | Zbl
[26] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982 | MR | MR | Zbl | Zbl
[27] N. Kh. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), Reidel Publ., Dordrecht–Boston–Lancaster, 1985 | MR | MR | Zbl | Zbl
[28] D. Bayer, D. Mumford, “What can be computed in algebraic geometry?”, Computational algebraic geometry and commutative algebra (Cortona, Italy, 1991), Sympos. Math., 34, Cambridge Univ. Press, Cambridge, 1993, 1–48 | MR | Zbl
[29] D. Eisenbud, Commutative algebra, Grad. Texts in Math., 150, Springer-Verlag, Berlin, 1995 | MR | Zbl
[30] A. G. Khovanskii, S. P. Chulkov, Geometriya polugruppy $Z_{\le 0}^n$, Izd-vo MTsNMO, M., 2006
[31] V. N. Latyshev, “A combinatorial complexity of Gröbner bases”, J. Math. Sci. (New York), 102:3 (2000), 4134–4138 | DOI | MR | Zbl