Rationality of the Poincar\'e series in Arnold's local problems of analysis
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 411-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any smooth action of a Lie pseudo-group we construct a domain (in the corresponding infinite jet space) consisting of finitely many open sets (atoms) such that all points in each atom have the same rational Poincaré series. We also prove that these series can be calculated algorithmically.
Keywords: orbits of actions of diffeomorphism groups in jet spaces, Poincaré series of dimensions of orbits, rationality of a series.
Mots-clés : dimensions of orbits
@article{IM2_2010_74_2_a6,
     author = {R. A. Sarkisyan},
     title = {Rationality of the {Poincar\'e} series in {Arnold's} local problems of analysis},
     journal = {Izvestiya. Mathematics },
     pages = {411--438},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
TI  - Rationality of the Poincar\'e series in Arnold's local problems of analysis
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 411
EP  - 438
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/
LA  - en
ID  - IM2_2010_74_2_a6
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%T Rationality of the Poincar\'e series in Arnold's local problems of analysis
%J Izvestiya. Mathematics 
%D 2010
%P 411-438
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/
%G en
%F IM2_2010_74_2_a6
R. A. Sarkisyan. Rationality of the Poincar\'e series in Arnold's local problems of analysis. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 411-438. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a6/

[1] V. I. Arnol'd, “Mathematical problems in classical physics”, Trends and perspectives in applied mathematics, Appl. Math. Sci., 100, Springer-Verlag, New York, 1994, 1–20 | MR | Zbl

[2] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl

[3] A. S. Shmelev, “On differential invariants of some differential geometric structures”, Proc. Steklov Inst. Math., 209 (1995), 203–234 | MR | Zbl

[4] A. S. Shmelev, “Functional moduli of jets of Riemannian metrics”, Funct. Anal. Appl., 31:2 (1997), 119–125 | DOI | MR | Zbl

[5] A. S. Shmelev, “Some properties of symplectic and hyper-Kählerian structures”, Russian Acad. Sci. Dokl. Math., 49:3 (1994), 511–514 | MR | Zbl

[6] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge Univ. Press, Cambridge, 1934 | Zbl

[7] J. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Math. Appl., 14, Gordon Breach, New York–London–Paris, 1978 | MR | MR | Zbl | Zbl

[8] S. Lie, Gesammelte Abhandlungen, Leipzig, Teubner, 1922 | MR | Zbl

[9] E. Cartan, {ØE}uvres complétes, Gauthier-Villars, Paris, 1952 | MR | Zbl

[10] Ch. Riquier, Les systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris, 1909 | Zbl

[11] Ch. Riquier, La méthode des fonctions majorantes et les systèmes d'équations aux dérivées partielles, Memorial Sci. Math. fasc. XXXII, Gauthier-Villars, Paris, 1928 | Zbl

[12] M. Janet, Les systèmes d'équations aux dérivées partielles, Memorial Sci. Math. fasc. XXI, Gauthier-Villars, Paris, 1927 | Zbl

[13] M. Janet, Équations aux dérivées partielles, Formulaire de Math., C.N.R.S., fasc. VII, 1956

[14] J. M. Thomas, Systems and roots, Byrd Press, Richmond, 1962 | Zbl

[15] J. F. Ritt, Differential algebra, Dover, New York, 1966 | MR | Zbl

[16] D. C. Spencer, “Overdetermined systems of linear partial differential equations”, Bull. Amer. Math. Soc., 75 (1969), 179–239 | DOI | MR | Zbl

[17] M. Kuranishi, Lectures on involutive systems of partial differential equations, Publ. Soc. Mat., Sao Paulo, 1967 | Zbl

[18] E. Kahler, Einfurung in die Theorie der Systeme von Differentialgleichungen, Teubner, Leipzig, 1934

[19] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior differential systems, Math. Sci. Res. Inst. Publ., 18, Springer-Verlag, New York, 1991 | MR | Zbl

[20] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Boston, MA, Birkhäuser, 1983 | MR | Zbl

[21] R. Bryant, Ph. Griffiths, L. Hsu, “Hyperbolic exterior differential systems and their conservation laws. Part I”, Selecta Math. (N.S.), 1:1 (1995), 21–112 | DOI | MR | Zbl

[22] R. Bryant, Ph. Griffiths, L. Hsu, “Hyperbolic exterior differential systems and their conservation laws. Part II”, Selecta Math. (N.S.), 1:2 (1995), 265–323 | DOI | MR | Zbl

[23] R. B. Gardner, The method of equivalence and its applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., 58, SIAM, Philadelphia, PA, 1989 | MR | Zbl

[24] P. J. Olver, Equivalence, invariants, and symmetry, Cambrigde Univ. Press, Cambrigde, 1995 | MR | Zbl

[25] R. A. Sarkisyan, I. G. Shandra, “Regularity and Tresse's theorem for geometric structures”, Izv. Math., 72:2 (2008), 345–382 | DOI | MR | Zbl

[26] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982 | MR | MR | Zbl | Zbl

[27] N. Kh. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), Reidel Publ., Dordrecht–Boston–Lancaster, 1985 | MR | MR | Zbl | Zbl

[28] D. Bayer, D. Mumford, “What can be computed in algebraic geometry?”, Computational algebraic geometry and commutative algebra (Cortona, Italy, 1991), Sympos. Math., 34, Cambridge Univ. Press, Cambridge, 1993, 1–48 | MR | Zbl

[29] D. Eisenbud, Commutative algebra, Grad. Texts in Math., 150, Springer-Verlag, Berlin, 1995 | MR | Zbl

[30] A. G. Khovanskii, S. P. Chulkov, Geometriya polugruppy $Z_{\le 0}^n$, Izd-vo MTsNMO, M., 2006

[31] V. N. Latyshev, “A combinatorial complexity of Gröbner bases”, J. Math. Sci. (New York), 102:3 (2000), 4134–4138 | DOI | MR | Zbl