Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_2_a5, author = {S. A. Nazarov and A. S. Slutskii}, title = {Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation}, journal = {Izvestiya. Mathematics }, pages = {379--409}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/} }
TY - JOUR AU - S. A. Nazarov AU - A. S. Slutskii TI - Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation JO - Izvestiya. Mathematics PY - 2010 SP - 379 EP - 409 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/ LA - en ID - IM2_2010_74_2_a5 ER -
%0 Journal Article %A S. A. Nazarov %A A. S. Slutskii %T Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation %J Izvestiya. Mathematics %D 2010 %P 379-409 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/ %G en %F IM2_2010_74_2_a5
S. A. Nazarov; A. S. Slutskii. Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 379-409. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/
[1] S. A. Nazarov, A. S. Slutskii, “Branching periodicity: homogenization of the Dirichlet problem for an elliptic system”, Dokl. Math., 70:1 (2004), 628–631 | MR
[2] S. A. Nazarov, A. S. Slutskii, “Homogenization of an elliptic system as the cells of periodicity are refined in one direction”, Math. Notes, 78:5–6 (2005), 814–826 | DOI | MR | Zbl
[3] S. A. Nazarov, A. S. Slutskii, “Homogenization of an elliptic system under condensing perforation of the domain”, St. Petersburg Math. J., 17:6 (2005), 989–1014 | DOI | MR | Zbl
[4] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl
[5] S. A. Nazarov, “Asimptotika reshenii ellipticheskikh uravnenii v tonkikh oblastyakh s kusochno gladkoi granitsei”, Differentsialnye uravneniya i ikh primeneniya, Vyp. 33, Izd-vo AN LitSSR, Vilnyus, 1982, 62–83
[6] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | MR | Zbl
[7] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[8] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1995), 681–748 | MR | Zbl
[9] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[10] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[11] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl | Zbl
[12] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl
[13] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Gëldera i printsip Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81:1 (1978), 25–82 | DOI | MR | Zbl
[14] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl
[15] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[16] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl