Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 379-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out a homogenization of a mixed boundary-value problem for a scalar elliptic equation in a rectangle with anisotropic fractal perforation, namely, the (small) size of holes is preserved in one direction, whereas it is reduced in the other when moving away from the base of the rectangle. Neumann conditions are imposed on the boundaries of the holes. A specific feature of the asymptotic constructions is the presence of several boundary layers. Explicit formulae are obtained for the homogenized differential operator and asymptotically exact error estimates are derived, and the smallness of the majorant is related to the smoothness property of the right-hand side with respect to the slow variable in the scale of Sobolev–Slobodetskii spaces.
Keywords: homogenization, boundary layers.
Mots-clés : anisotropic perforation, fractal structure
@article{IM2_2010_74_2_a5,
     author = {S. A. Nazarov and A. S. Slutskii},
     title = {Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation},
     journal = {Izvestiya. Mathematics },
     pages = {379--409},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - A. S. Slutskii
TI  - Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 379
EP  - 409
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/
LA  - en
ID  - IM2_2010_74_2_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A A. S. Slutskii
%T Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation
%J Izvestiya. Mathematics 
%D 2010
%P 379-409
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/
%G en
%F IM2_2010_74_2_a5
S. A. Nazarov; A. S. Slutskii. Homogenization of a~mixed boundary-value problem in a~domain with anisotropic fractal perforation. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 379-409. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a5/

[1] S. A. Nazarov, A. S. Slutskii, “Branching periodicity: homogenization of the Dirichlet problem for an elliptic system”, Dokl. Math., 70:1 (2004), 628–631 | MR

[2] S. A. Nazarov, A. S. Slutskii, “Homogenization of an elliptic system as the cells of periodicity are refined in one direction”, Math. Notes, 78:5–6 (2005), 814–826 | DOI | MR | Zbl

[3] S. A. Nazarov, A. S. Slutskii, “Homogenization of an elliptic system under condensing perforation of the domain”, St. Petersburg Math. J., 17:6 (2005), 989–1014 | DOI | MR | Zbl

[4] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl

[5] S. A. Nazarov, “Asimptotika reshenii ellipticheskikh uravnenii v tonkikh oblastyakh s kusochno gladkoi granitsei”, Differentsialnye uravneniya i ikh primeneniya, Vyp. 33, Izd-vo AN LitSSR, Vilnyus, 1982, 62–83

[6] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | MR | Zbl

[7] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[8] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1995), 681–748 | MR | Zbl

[9] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[10] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl

[11] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl | Zbl

[12] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl

[13] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Gëldera i printsip Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81:1 (1978), 25–82 | DOI | MR | Zbl

[14] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl

[15] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[16] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl