Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_2_a4, author = {V. V. Lebedev}, title = {On the topological stability of continuous functions in certain spaces related to {Fourier} series}, journal = {Izvestiya. Mathematics }, pages = {347--378}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/} }
TY - JOUR AU - V. V. Lebedev TI - On the topological stability of continuous functions in certain spaces related to Fourier series JO - Izvestiya. Mathematics PY - 2010 SP - 347 EP - 378 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/ LA - en ID - IM2_2010_74_2_a4 ER -
V. V. Lebedev. On the topological stability of continuous functions in certain spaces related to Fourier series. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 347-378. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/
[1] C. Goffman, D. Waterman, “Functions whose Fourier series converge for every change of variable”, Proc. Amer. Math. Soc., 19:1 (1968), 80–86 | DOI | MR | Zbl
[2] A. Baernstein, D. Waterman, “Functions whose Fourier series converge uniformly for every change of variable”, Indiana Univ. Math. J., 22 (1972), 569–576 | DOI | MR | Zbl
[3] D. Waterman, “On the preservation of the order of magnitude of Fourier coefficients under every change of variable”, Analysis, 6:2–3 (1986), 255–264 | MR | Zbl
[4] Z. A. Chanturiya, “The modulus of variation of a function and its application in the theory of Fourier series”, Soviet Math. Dokl., 15 (1974), 67–71 | MR | Zbl
[5] Z. A. Chanturiya, “Absolute convergence of Fourier series”, Math. Notes, 18:2 (1975), 695–700 | DOI | MR | Zbl
[6] Z. A. Čanturija, “On uniform convergence of Fourier series”, Math. USSR-Sb., 29:4 (1976), 475–495 | DOI | MR | Zbl | Zbl
[7] E. A. Sevastyanov, “Kusochno monotonnaya approksimatsiya i $\Phi$-variatsiya”, Anal. Math., 1:2 (1975), 141–164 | DOI | MR | Zbl
[8] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[9] A. M. Olevskii, “Modifications of functions and Fourier series”, Russian Math. Surveys, 40:3 (1985), 181–224 | DOI | MR | Zbl | Zbl
[10] A. M. Olevskii, “Gomeomorfizmy okruzhnosti, modifikatsii funktsii i ryady Fure”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, USA, 1986), Amer. Math. Soc., Providence, RI, 1987, 976–989 | MR | Zbl
[11] V. Olevskii, “Variation, homeomorphisms, and Fourier multipliers”, C. R. Acad. Sci. Paris Sér. I Math., 325:6 (1997), 639–644 | DOI | MR | Zbl
[12] V. V. Lebedev, “O funktsiyakh na okruzhnosti, vsyakaya superpozitsiya kotorykh s gomeomorfizmom prinadlezhit prostranstvu $A_p(T)(=\mathcal Fl^p)$”, Tez. dokl. 9-i Saratovskoi zimnei shkoly, Sovremennye problemy teorii funktsii i ikh prilozheniya (Sarat. univ., 1997), Saratov, 1998, 100
[13] V. Lebedev, “Superposition operators and distribution of Fourier coefficients”, 12–th Summer St. Petersburg Meeting in Math. Analysis (2003, Abstracts, Euler Int. Math. Inst.), St. Petersburg, 2003, 23
[14] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl
[15] A. Zygmund, Trigonometric series, vol. I, II, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl
[16] S. N. Bernshtein, Polnoe sobranie sochinenii, t. 2. Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1954 | MR | Zbl
[17] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl
[18] G. T. Oniani, “Topologicheskaya kharakteristika nekotorykh klassov nepreryvnykh funktsii, ryady Fure kotorykh skhodyatsya ravnomerno”, Soobsch. AN GruzSSR, 132:2 (1988), 261–263 | MR | Zbl
[19] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl
[20] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl
[21] R. E. Edwards, G. I. Gaudry, Littlewood–Paley and multiplier theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[22] R. Coifman, J. L. Rubio de Francia, S. Semmes, “Multiplicateurs de Fourier de $L^p(\mathbb R)$ et estimations quadratiques”, C. R. Acad. Sci. Paris Sér. I Math., 306:8 (1988), 351–354 | MR | Zbl
[23] M. Jodeit, jr., “Restrictions and extensions of Fourier multipliers”, Studia Math., 34 (1970), 215–226 | MR | Zbl
[24] V. Olevskii, “A note on multiplier transformations”, Internat. Math. Res. Notices, 1 (1994), 13–17 | DOI | MR | Zbl
[25] V. Olevskii, “Addendum to «A note on multiplier transformations»”, Internat. Math. Res. Notices, 7 (1994), 311 | DOI | MR | Zbl