On the topological stability of continuous functions in certain spaces related to Fourier series
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 347-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the following properties of a continuous function $f$ on the circle $\mathbb T$ are equivalent: the sequence $\widehat{f\circ h}$ of the Fourier coefficients of the superposition $f\circ h$ belongs to the weak $l^1$ for every homeomorphism $h$ of the circle onto itself; $f$ is a function of bounded quadratic variation. We obtain similar results for spaces of functions whose sequence of Fourier coefficients belongs to the weak $l^p$, $1$, for spaces $A_p$ of functions $f$ with $\widehat{f}\in l^p$, for the Sobolev spaces $W_2^\lambda$, and for other spaces of functions on $\mathbb T$. Under rather general assumptions on a space $\mathbb X$ of functions on the circle, we give a necessary condition for a given continuous function $f$ to stay in $\mathbb X$ for every change of variable. We also consider the multidimensional case, which is essentially different from the one-dimensional case. In particular, we show that if $p2$ and $f$ is a continuous function on the torus $\mathbb T^d$, $d\geqslant2$, such that $f\circ h\in A_p(\mathbb T^d)$ for every homeomorphism $h\colon \mathbb T^d\to\mathbb T^d$, then $f$ is constant.
Keywords: homeomorphisms of the circle, Fourier series.
@article{IM2_2010_74_2_a4,
     author = {V. V. Lebedev},
     title = {On the topological stability of continuous functions in certain spaces related to {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {347--378},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - On the topological stability of continuous functions in certain spaces related to Fourier series
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 347
EP  - 378
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/
LA  - en
ID  - IM2_2010_74_2_a4
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T On the topological stability of continuous functions in certain spaces related to Fourier series
%J Izvestiya. Mathematics 
%D 2010
%P 347-378
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/
%G en
%F IM2_2010_74_2_a4
V. V. Lebedev. On the topological stability of continuous functions in certain spaces related to Fourier series. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 347-378. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a4/

[1] C. Goffman, D. Waterman, “Functions whose Fourier series converge for every change of variable”, Proc. Amer. Math. Soc., 19:1 (1968), 80–86 | DOI | MR | Zbl

[2] A. Baernstein, D. Waterman, “Functions whose Fourier series converge uniformly for every change of variable”, Indiana Univ. Math. J., 22 (1972), 569–576 | DOI | MR | Zbl

[3] D. Waterman, “On the preservation of the order of magnitude of Fourier coefficients under every change of variable”, Analysis, 6:2–3 (1986), 255–264 | MR | Zbl

[4] Z. A. Chanturiya, “The modulus of variation of a function and its application in the theory of Fourier series”, Soviet Math. Dokl., 15 (1974), 67–71 | MR | Zbl

[5] Z. A. Chanturiya, “Absolute convergence of Fourier series”, Math. Notes, 18:2 (1975), 695–700 | DOI | MR | Zbl

[6] Z. A. Čanturija, “On uniform convergence of Fourier series”, Math. USSR-Sb., 29:4 (1976), 475–495 | DOI | MR | Zbl | Zbl

[7] E. A. Sevastyanov, “Kusochno monotonnaya approksimatsiya i $\Phi$-variatsiya”, Anal. Math., 1:2 (1975), 141–164 | DOI | MR | Zbl

[8] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[9] A. M. Olevskii, “Modifications of functions and Fourier series”, Russian Math. Surveys, 40:3 (1985), 181–224 | DOI | MR | Zbl | Zbl

[10] A. M. Olevskii, “Gomeomorfizmy okruzhnosti, modifikatsii funktsii i ryady Fure”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, USA, 1986), Amer. Math. Soc., Providence, RI, 1987, 976–989 | MR | Zbl

[11] V. Olevskii, “Variation, homeomorphisms, and Fourier multipliers”, C. R. Acad. Sci. Paris Sér. I Math., 325:6 (1997), 639–644 | DOI | MR | Zbl

[12] V. V. Lebedev, “O funktsiyakh na okruzhnosti, vsyakaya superpozitsiya kotorykh s gomeomorfizmom prinadlezhit prostranstvu $A_p(T)(=\mathcal Fl^p)$”, Tez. dokl. 9-i Saratovskoi zimnei shkoly, Sovremennye problemy teorii funktsii i ikh prilozheniya (Sarat. univ., 1997), Saratov, 1998, 100

[13] V. Lebedev, “Superposition operators and distribution of Fourier coefficients”, 12–th Summer St. Petersburg Meeting in Math. Analysis (2003, Abstracts, Euler Int. Math. Inst.), St. Petersburg, 2003, 23

[14] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl

[15] A. Zygmund, Trigonometric series, vol. I, II, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl

[16] S. N. Bernshtein, Polnoe sobranie sochinenii, t. 2. Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1954 | MR | Zbl

[17] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[18] G. T. Oniani, “Topologicheskaya kharakteristika nekotorykh klassov nepreryvnykh funktsii, ryady Fure kotorykh skhodyatsya ravnomerno”, Soobsch. AN GruzSSR, 132:2 (1988), 261–263 | MR | Zbl

[19] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[20] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[21] R. E. Edwards, G. I. Gaudry, Littlewood–Paley and multiplier theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[22] R. Coifman, J. L. Rubio de Francia, S. Semmes, “Multiplicateurs de Fourier de $L^p(\mathbb R)$ et estimations quadratiques”, C. R. Acad. Sci. Paris Sér. I Math., 306:8 (1988), 351–354 | MR | Zbl

[23] M. Jodeit, jr., “Restrictions and extensions of Fourier multipliers”, Studia Math., 34 (1970), 215–226 | MR | Zbl

[24] V. Olevskii, “A note on multiplier transformations”, Internat. Math. Res. Notices, 1 (1994), 13–17 | DOI | MR | Zbl

[25] V. Olevskii, “Addendum to «A note on multiplier transformations»”, Internat. Math. Res. Notices, 7 (1994), 311 | DOI | MR | Zbl