Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_2_a2, author = {V. G. Zhuravlev}, title = {One-dimensional {Fibonacci} tilings and induced two-colour rotations of the circle}, journal = {Izvestiya. Mathematics }, pages = {281--323}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a2/} }
V. G. Zhuravlev. One-dimensional Fibonacci tilings and induced two-colour rotations of the circle. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 281-323. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a2/
[1] V. G. Zhuravlev, “One-dimensional Fibonacci tilings”, Izv. Math., 71:2 (2007), 307–340 | DOI | MR | Zbl
[2] H. Suzuki, Sh. Ito, K. Aihara, “Double rotations”, Discrete Contin. Dyn. Syst., 13:2 (2005), 515–532 | DOI | MR | Zbl
[3] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Ergodic Theory Dynam. Systems, 15:5 (1995), 821–832 | MR | Zbl
[4] H. Bruin, S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137:1 (2003), 125–148 | DOI | MR | Zbl
[5] A. V. Shutov, “On the distribution of the two-color shift values modulo one”, Abstracts of 5th International Algebraic Conference in Ukraine (Odessa), 2005
[6] S. B. Gashkov, V. N. Chubarikov, Arifmetika. Algoritmy. Slozhnost vychislenii, Vysshaya shkola, M., 2000 | Zbl
[7] D. D. Wall, “Fibonacci series modulo $m$”, Amer. Math. Monthly, 67:6 (1960), 525–532 | DOI | MR | Zbl
[8] A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl
[9] V. G. Zhuravlev, One-dimensional Fibonacci tilings and derivatives of two-colour rotations of a circle, Preprint Max-Planck-Institut für Mathematik, 2004, 43 pp.
[10] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl
[11] V. G. Zhuravlev, “Attraction domain for the attractor of a two-color circle rotation”, J. Math. Sci. (N. Y.), 150:3 (2008), 2056–2083 | DOI