One-dimensional Fibonacci tilings and induced two-colour rotations of the circle
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 281-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study two-colour rotations $S_\varepsilon(a,b)$ of the unit circle that take $x\in[0,1)$ to the point $\langle x+a\tau\rangle$ if $x\in[0,\varepsilon)$ and to $\langle x+b\tau\rangle$ if $x\in[\varepsilon,1)$. The rotations $S_\varepsilon(a,b)$ depend on discrete parameters $a,b\in\mathbb Z$ and a continuous parameter $\varepsilon\in[0,1)$ and we choose $\tau$ to be the golden ratio $\frac{1+\sqrt5}2$. We shall show that the $S_\varepsilon(a,b)$ have an invariance property: the induced maps or first-return maps for $S_\varepsilon(a,b)$ are again two-colour rotations $S_{\varepsilon'}(a',b')$ with renormalized parameters $\varepsilon'\in[0,1)$, $a',b'\in\mathbb Z$. Moreover, we find conditions under which the induced maps $S_{\varepsilon'}(a',b')$ have the form $S_{\varepsilon'}(a,b)$, that is, the $S_\varepsilon(a,b)$ are isomorphic to their induced maps and thus have another property, namely, that of self-similarity. We describe the structure of the attractor $\operatorname{Att}(S_\varepsilon(a,b))$ of a rotation $S_\varepsilon(a,b)$ and prove that the restriction of a rotation to its attractor is isomorphic to a certain family of integral isomorphisms $T_\varepsilon$ obtained by lifting the simple rotation of the circle $S(x)=\langle x+\tau\rangle$. A corollary is the uniform distribution of the $S_\varepsilon(a,b)$-orbits on the attractor $\operatorname{Att}(S_\varepsilon(a,b))$. We find a connection between the measure of the attractor $\operatorname{Att}(S_\varepsilon(a,b))$ and the frequency distribution function $\nu_\varepsilon(\theta_1,\theta_2)$ of points in $S_\varepsilon(a,b)$-orbits over closed intervals $[\theta_1,\theta_2]\subset[0,1)$. Explicit formulae for the frequency $\nu_\varepsilon(\theta_1,\theta_2)$ are obtained in certain cases.
Keywords: Fibonacci tilings, double rotations of the circle, induced and integral maps, frequency distribution.
@article{IM2_2010_74_2_a2,
     author = {V. G. Zhuravlev},
     title = {One-dimensional {Fibonacci} tilings and induced two-colour rotations of the circle},
     journal = {Izvestiya. Mathematics },
     pages = {281--323},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - One-dimensional Fibonacci tilings and induced two-colour rotations of the circle
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 281
EP  - 323
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a2/
LA  - en
ID  - IM2_2010_74_2_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T One-dimensional Fibonacci tilings and induced two-colour rotations of the circle
%J Izvestiya. Mathematics 
%D 2010
%P 281-323
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a2/
%G en
%F IM2_2010_74_2_a2
V. G. Zhuravlev. One-dimensional Fibonacci tilings and induced two-colour rotations of the circle. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 281-323. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a2/

[1] V. G. Zhuravlev, “One-dimensional Fibonacci tilings”, Izv. Math., 71:2 (2007), 307–340 | DOI | MR | Zbl

[2] H. Suzuki, Sh. Ito, K. Aihara, “Double rotations”, Discrete Contin. Dyn. Syst., 13:2 (2005), 515–532 | DOI | MR | Zbl

[3] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Ergodic Theory Dynam. Systems, 15:5 (1995), 821–832 | MR | Zbl

[4] H. Bruin, S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137:1 (2003), 125–148 | DOI | MR | Zbl

[5] A. V. Shutov, “On the distribution of the two-color shift values modulo one”, Abstracts of 5th International Algebraic Conference in Ukraine (Odessa), 2005

[6] S. B. Gashkov, V. N. Chubarikov, Arifmetika. Algoritmy. Slozhnost vychislenii, Vysshaya shkola, M., 2000 | Zbl

[7] D. D. Wall, “Fibonacci series modulo $m$”, Amer. Math. Monthly, 67:6 (1960), 525–532 | DOI | MR | Zbl

[8] A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl

[9] V. G. Zhuravlev, One-dimensional Fibonacci tilings and derivatives of two-colour rotations of a circle, Preprint Max-Planck-Institut für Mathematik, 2004, 43 pp.

[10] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[11] V. G. Zhuravlev, “Attraction domain for the attractor of a two-color circle rotation”, J. Math. Sci. (N. Y.), 150:3 (2008), 2056–2083 | DOI