Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 219-279

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the general solution and describe the structural properties of extremal functions of the Kolmogorov problem $\|f^{(m)}\|_{\mathbb L_\infty(\mathbb I)}\to\sup$, $f\in W^r\!H^\omega\!(\mathbb I)$, $\|f\|_{\mathbb L_p(\mathbb I)}\le B$, for all $r,m\in\mathbb Z$, $0\le m\le r$, all $p$, $1\le p\infty$, concave moduli of continuity $\omega$, all positive $B$ and $\mathbb I=\mathbb R$ or $\mathbb{I}=\mathbb R_+$, where $W^rH^\omega(\mathbb I)$ is the class of functions whose $r$th derivatives have modulus of continuity majorized by $\omega$. We also obtain sharp constants in the additive (and multiplicative in the case of Hölder classes) inequalities for the norms $\|f^{(m)}\|_{\mathbb L_\infty(\mathbb I)}$ of the derivatives of functions $f\in W^rH^\omega(\mathbb I)$ with finite norm $\|f^{(r)}\|_{\mathbb L_p(\mathbb I)}$. We also investigate some properties of extremal functions in the special case $r=1$ (such as the property of being compactly supported) and obtain inequalities between the knots of the corresponding $\omega$-splines. In the case of the Hölder moduli of continuity $\omega(t)=t^\alpha$, we find that the lengths of the intervals between the knots of extremal $\omega$-splines decrease in geometric progression while the graphs of the solutions exhibit the fractal property of self-similarity.
Keywords: Kolmogorov–Landau inequalities, moduli of continuity.
@article{IM2_2010_74_2_a1,
     author = {S. K. Bagdasarov},
     title = {Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm},
     journal = {Izvestiya. Mathematics },
     pages = {219--279},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/}
}
TY  - JOUR
AU  - S. K. Bagdasarov
TI  - Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 219
EP  - 279
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/
LA  - en
ID  - IM2_2010_74_2_a1
ER  - 
%0 Journal Article
%A S. K. Bagdasarov
%T Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm
%J Izvestiya. Mathematics 
%D 2010
%P 219-279
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/
%G en
%F IM2_2010_74_2_a1
S. K. Bagdasarov. Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 219-279. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/