Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 219-279
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the general solution and describe the structural properties
of extremal functions of the Kolmogorov problem
$\|f^{(m)}\|_{\mathbb L_\infty(\mathbb I)}\to\sup$,
$f\in W^r\!H^\omega\!(\mathbb I)$, $\|f\|_{\mathbb L_p(\mathbb I)}\le B$,
for all $r,m\in\mathbb Z$, $0\le m\le r$,
all $p$, $1\le p\infty$, concave moduli of continuity $\omega$,
all positive $B$ and $\mathbb I=\mathbb R$ or
$\mathbb{I}=\mathbb R_+$, where $W^rH^\omega(\mathbb I)$ is the
class of functions whose $r$th derivatives have modulus of continuity
majorized by $\omega$. We also obtain sharp constants in the additive
(and multiplicative in the case of Hölder classes) inequalities
for the norms $\|f^{(m)}\|_{\mathbb L_\infty(\mathbb I)}$ of the
derivatives of functions $f\in W^rH^\omega(\mathbb I)$ with
finite norm $\|f^{(r)}\|_{\mathbb L_p(\mathbb I)}$.
We also investigate some properties of extremal functions
in the special case $r=1$ (such as the property of being
compactly supported) and obtain inequalities between the
knots of the corresponding $\omega$-splines.
In the case of the Hölder moduli of continuity
$\omega(t)=t^\alpha$, we find that the lengths of the
intervals between the knots of extremal $\omega$-splines
decrease in geometric progression while the graphs
of the solutions exhibit the fractal property of self-similarity.
Keywords:
Kolmogorov–Landau inequalities, moduli of continuity.
@article{IM2_2010_74_2_a1,
author = {S. K. Bagdasarov},
title = {Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm},
journal = {Izvestiya. Mathematics },
pages = {219--279},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/}
}
TY - JOUR AU - S. K. Bagdasarov TI - Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm JO - Izvestiya. Mathematics PY - 2010 SP - 219 EP - 279 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/ LA - en ID - IM2_2010_74_2_a1 ER -
S. K. Bagdasarov. Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 219-279. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a1/