On the standard conjecture of Lefschetz type for complex projective threefolds
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 167-187

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain natural assumptions on cohomology of a complex projective fibred threefold with semi-stable degenerations, we prove the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $\Lambda$ and $*$. In particular, $B(X)$ is true if at least one of the following conditions holds: 1) the generic fibre of some $1$-parameter holomorphic family $\pi\colon X\to C$ is birationally equivalent to either a ruled surface, an Enriques surface, or a K3-surface, 2) all the fibres of $\pi$ are smooth surfaces of Kodaira dimension $\varkappa\le0$.
Mots-clés : standard conjecture of Lefschetz type.
@article{IM2_2010_74_1_a3,
     author = {S. G. Tankeev},
     title = {On the standard conjecture of {Lefschetz} type for complex projective threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {167--187},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a3/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture of Lefschetz type for complex projective threefolds
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 167
EP  - 187
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a3/
LA  - en
ID  - IM2_2010_74_1_a3
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture of Lefschetz type for complex projective threefolds
%J Izvestiya. Mathematics 
%D 2010
%P 167-187
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a3/
%G en
%F IM2_2010_74_1_a3
S. G. Tankeev. On the standard conjecture of Lefschetz type for complex projective threefolds. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 167-187. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a3/