Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 151-165

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that sets of zero modulus with weight $Q$ (in particular, isolated singularities) are removable for discrete open $Q$-maps $f\colon D\to\overline{\mathbb R}{}^n$ if the function $Q(x)$ has finite mean oscillation or a logarithmic singularity of order not exceeding $n-1$ on the corresponding set. We obtain analogues of the well-known Sokhotskii–Weierstrass theorem and also of Picard's theorem. In particular, we show that in the neighbourhood of an essential singularity, every discrete open $Q$-map takes any value infinitely many times, except possibly for a set of values of zero capacity.
Keywords: maps with bounded distortion and their generalizations, discrete open maps, removing singularities of maps, essential singularities, Picard's theorem, Sokhotskii's theorem
Mots-clés : Liouville's theorem.
@article{IM2_2010_74_1_a2,
     author = {E. A. Sevost'yanov},
     title = {Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity},
     journal = {Izvestiya. Mathematics },
     pages = {151--165},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 151
EP  - 165
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/
LA  - en
ID  - IM2_2010_74_1_a2
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
%J Izvestiya. Mathematics 
%D 2010
%P 151-165
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/
%G en
%F IM2_2010_74_1_a2
E. A. Sevost'yanov. Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 151-165. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/