Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 151-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that sets of zero modulus with weight $Q$ (in particular, isolated singularities) are removable for discrete open $Q$-maps $f\colon D\to\overline{\mathbb R}{}^n$ if the function $Q(x)$ has finite mean oscillation or a logarithmic singularity of order not exceeding $n-1$ on the corresponding set. We obtain analogues of the well-known Sokhotskii–Weierstrass theorem and also of Picard's theorem. In particular, we show that in the neighbourhood of an essential singularity, every discrete open $Q$-map takes any value infinitely many times, except possibly for a set of values of zero capacity.
Keywords: maps with bounded distortion and their generalizations, discrete open maps, removing singularities of maps, essential singularities, Picard's theorem, Sokhotskii's theorem
Mots-clés : Liouville's theorem.
@article{IM2_2010_74_1_a2,
     author = {E. A. Sevost'yanov},
     title = {Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity},
     journal = {Izvestiya. Mathematics },
     pages = {151--165},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 151
EP  - 165
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/
LA  - en
ID  - IM2_2010_74_1_a2
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity
%J Izvestiya. Mathematics 
%D 2010
%P 151-165
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/
%G en
%F IM2_2010_74_1_a2
E. A. Sevost'yanov. Towards a theory of removable singularities for maps with unbounded characteristic of quasi-conformity. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 151-165. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a2/

[1] G. D. Suvorov, Ob iskusstve matematicheskogo issledovaniya, TEAN, Donetsk, 1999

[2] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Clarendon Press, New York; Oxford Univ. Press, Oxford, 2001 | MR | Zbl

[3] A. A. Ignat'ev, V. I. Ryazanov, “Finite mean oscillation in the mapping theory”, Ukr. Math. Bull., 2:3 (2005), 403–424 | MR | Zbl

[4] P. Koskela, K. Rajala, “Mappings of finite distortion: removable singularities”, Israel J. Math., 136:1 (2003), 269–283 | DOI | MR | Zbl

[5] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “Mappings with finite length distortion”, J. Anal. Math., 93:1 (2004), 215–236 | DOI | MR | Zbl

[6] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 49–69 | MR | Zbl

[7] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005

[8] K. Rajala, “Mappings of finite distortion: removable singularities for locally homeomorphic mappings”, Proc. Amer. Math. Soc., 132:11 (2004), 3251–3258 | DOI | MR | Zbl

[9] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl

[10] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl

[11] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[12] V. M. Miklyukov, “Boundary properties of $n$-dimensional quasi-conformal mappings”, Soviet Math. Dokl., 11 (1970), 969–971 | MR | Zbl

[13] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[14] Yu. F. Strugov, Kvazikonformnye v srednem otobrazheniya i ekstremalnye zadachi, ch. 1, dep. v VINITI 2786-V94, 1994

[15] Yu. F. Strugov, Kvazikonformnye v srednem otobrazheniya i ekstremalnye zadachi, ch. 2, dep. v VINITI 2787-V94, 1994

[16] S. K. Vodop'yanov, A. D. Ukhlov, “Weighted Sobolev spaces and quasiconformal mappings”, Dokl. Math., 72:1 (2005), 561–566 | MR | Zbl

[17] Ch. J. Bishop , V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl

[18] Yu. G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Siberian Math. J., 10:5 (1969), 818–842 | DOI | MR | Zbl

[19] W. Hurewicz, H. Wallman, Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, 1948 | MR | Zbl

[20] K. Kuratowski, Topology, vol. 2, Academic Press, New York–London, 1968 | MR | MR | Zbl

[21] G. Th. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942 | MR | Zbl

[22] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Berlin–New York, Springer-Verlag, 1971 | DOI | MR | Zbl

[23] C. J. Titus, G. S. Young, “The extension of interiority, with some applications”, Trans. Amer. Math. Soc., 103:2 (1962), 329–340 | DOI | MR | Zbl

[24] S. Sto\" ilow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1956 | MR | MR | Zbl | Zbl

[25] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl

[26] V. A. Zorič, “A theorem of M. A. Lavrent'ev on quasiconformal space map”, Math. USSR-Sb., 3:3 (1967), 389–403 | DOI | MR | Zbl | Zbl

[27] S. Rickman, “On the number of omitted values of entire quasiregular mappings”, J. Analyse Math., 37:1 (1980), 100–117 | DOI | MR | Zbl