Widths of some classes of convex functions and bodies
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 127-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider classes of uniformly bounded convex functions defined on convex compact bodies in $\mathbb{R}^d$ and satisfying a Lipschitz condition and establish the exact orders of their Kolmogorov, entropy, and pseudo-dimension widths in the $L_1$-metric. We also introduce the notions of pseudo-dimension and pseudo-dimension widths for classes of sets and determine the exact orders of the entropy and pseudo-dimension widths of some classes of convex bodies in $\mathbb{R}^d$ relative to the pseudo-metric defined as the $d$-dimensional Lebesgue volume of the symmetric difference of two sets. We also find the exact orders of the entropy and pseudo-dimension widths of the corresponding classes of characteristic functions in $L_p$-spaces, $1\le p\le\infty$.
Keywords: convex function, entropy
Mots-clés : pseudo-dimension.
@article{IM2_2010_74_1_a1,
     author = {V. N. Konovalov and V. E. Maiorov},
     title = {Widths of some classes of convex functions and bodies},
     journal = {Izvestiya. Mathematics },
     pages = {127--150},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a1/}
}
TY  - JOUR
AU  - V. N. Konovalov
AU  - V. E. Maiorov
TI  - Widths of some classes of convex functions and bodies
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 127
EP  - 150
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a1/
LA  - en
ID  - IM2_2010_74_1_a1
ER  - 
%0 Journal Article
%A V. N. Konovalov
%A V. E. Maiorov
%T Widths of some classes of convex functions and bodies
%J Izvestiya. Mathematics 
%D 2010
%P 127-150
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a1/
%G en
%F IM2_2010_74_1_a1
V. N. Konovalov; V. E. Maiorov. Widths of some classes of convex functions and bodies. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 127-150. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a1/