An application of intertwining operators in functional analysis
Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1265-1288.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider classes of integral operators on the spaces of square-integrable functions on the sphere and of locally integrable functions on Lobachevsky space. The kernels of these operators depend only on the distance between points in the spherical and hyperbolic geometry, respectively. These operators are intertwining for the quasi-regular representation of the corresponding Lie group, and this enables us to evaluate their spectra and diagonalize the operators themselves. As applications, we take the Minkowski problem and the Funk–Hecke theorem for Euclidean space $\mathbb R^n$. A generalization is obtained of the Funk–Hecke theorem in the case of hyperbolic space $\mathbb R^{n-1,1}$ with indefinite inner product.
Keywords: intertwining operator, multiplicity-free representation, hyperbolic harmonics, continuous basis, generalized Funk–Hecke theorem.
@article{IM2_2009_73_6_a7,
     author = {V. V. Shtepin and T. V. Shtepina},
     title = {An application of intertwining operators in functional analysis},
     journal = {Izvestiya. Mathematics },
     pages = {1265--1288},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a7/}
}
TY  - JOUR
AU  - V. V. Shtepin
AU  - T. V. Shtepina
TI  - An application of intertwining operators in functional analysis
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 1265
EP  - 1288
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a7/
LA  - en
ID  - IM2_2009_73_6_a7
ER  - 
%0 Journal Article
%A V. V. Shtepin
%A T. V. Shtepina
%T An application of intertwining operators in functional analysis
%J Izvestiya. Mathematics 
%D 2009
%P 1265-1288
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a7/
%G en
%F IM2_2009_73_6_a7
V. V. Shtepin; T. V. Shtepina. An application of intertwining operators in functional analysis. Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1265-1288. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a7/

[1] A. Erdélyi, “Die Funksche Integralgleichung der Kugelflächen-funktionen und ihre Übertragung auf die Überkugel”, Math. Ann., 115:1 (1938), 456–465 | DOI | MR | Zbl

[2] E. Hecke, “Über orthogonal-invariante Integralgleichungen”, Math. Ann., 78:1–4 (1916), 398–404 | DOI | MR | Zbl

[3] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[4] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[5] V. P. Burskii, T. V. Shtepina, “On the spectrum of an equivariant extension of the Laplace operator in a ball”, Ukrainian Math. J., 52:11 (2000), 1679–1690 | DOI | MR | Zbl

[6] A. A. Kirillov, Lectures on the orbit method, Grad. Stud. Math., 64, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[7] N. Ya. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[8] D. P. Želobenko, Compact Lie groups and their representations, Amer. Math. Soc., Providence, RI, 1973 | MR | MR | Zbl | Zbl

[9] V. V. Shtepin, “The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations”, Izv. Math., 62:3 (1998), 627–648 | DOI | MR | Zbl

[10] V. V. Shtepin, “The intermediate Lie algebra $\mathfrak d_{n-1/2}$, the weight scheme and finite-dimensional representations with highest weight”, Izv. Math., 68:2 (2004), 375–404 | DOI | MR | Zbl

[11] D. P. Zhelobenko, A. Shtern, Predstavleniya grupp Li, Nauka, M., 1983 | MR | Zbl

[12] P. Funk, “Beiträge zur Theorie der Kugelfunktionen”, Math. Ann., 77:1 (1915), 136–152 | DOI | MR | Zbl

[13] V. S. Vladimirov, “Ob integralnom uravnenii, svyazannom so sfericheskimi funktsiyami”, Nauchnye doklady vysshei shkoly, Fiz.-mat. nauki, 6 (1958), 142–146

[14] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1944 | MR | Zbl

[15] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. Vol. 2. Special functions, Gordon Breach, New York, 1988 | MR | MR | Zbl | Zbl

[16] A. O. Barut, R. Raczka, Theory of group representations and applications, Geest Portig, PWN–Polish Scientific Publishers, 1977 | MR | MR | Zbl | Zbl

[17] E. H. Lieb, M. Loss, Analysis, Grad. Stud. Math., 14, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl | Zbl

[18] I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized functions, Vol. 5: Integral geometry and representation theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl

[19] N. Ya. Vilenkin, “Special functions connected with class 1 representations of groups of motions in spaces of constant curvature”, Trans. Moscow Math. Soc., 12 (1963), 209–290 | MR | Zbl

[20] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR | Zbl

[21] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962 | MR | Zbl | Zbl

[22] T. V. Shtepina, “A generalization of the Funk–Hecke theorem to the case of hyperbolic spaces”, Izv. Math., 68:5 (2004), 1051–1061 | DOI | MR | Zbl

[23] A. Kratzer, W. Franz, Transzendente Funktionen, Geest Portig, Leipzig, 1960 | MR | Zbl