Monge--Amp\`ere equations and tensorial functors
Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1217-1263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider differential-geometric structures associated with Monge–Ampère equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge–Ampère equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge–Ampère equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge–Ampère equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge–Ampère equation. These functors enable us to establish effectively verifiable criteria for a Monge–Ampère equation to belong to the subcategories listed above.
Keywords: Monge–Ampère equation, contact linearization, differential-geometric structures.
@article{IM2_2009_73_6_a6,
     author = {D. V. Tunitsky},
     title = {Monge--Amp\`ere equations and tensorial functors},
     journal = {Izvestiya. Mathematics },
     pages = {1217--1263},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Monge--Amp\`ere equations and tensorial functors
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 1217
EP  - 1263
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a6/
LA  - en
ID  - IM2_2009_73_6_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Monge--Amp\`ere equations and tensorial functors
%J Izvestiya. Mathematics 
%D 2009
%P 1217-1263
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a6/
%G en
%F IM2_2009_73_6_a6
D. V. Tunitsky. Monge--Amp\`ere equations and tensorial functors. Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1217-1263. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a6/

[1] R. O. Wells, jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood Cliffs, NJ, 1973 | MR | MR | Zbl

[2] V. V. Lychagin, “Contact geometry and non-linear second-order differential equations”, Russian Math. Surveys, 34:1 (1979), 149–180 | DOI | MR | Zbl | Zbl

[3] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Intersci. Publ., New York–London, 1962 | MR | MR | Zbl | Zbl

[4] Sh. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[5] T. Morimoto, “La géométrie des équations de Monge–Ampère”, C. R. Acad. Sci. Paris Sér. A-B, 289:1 (1979), 25–28 | MR | Zbl

[6] D. V. Tunitskii, “On the contact linearization of Monge–Ampere equations”, Izv. Math., 60:2 (1996), 425–451 | DOI | MR | Zbl

[7] D. V. Tunitskii, “Equivalence and characteristic connections of the Monge–Ampere equations”, Sb. Math., 188:5 (1997), 771–797 | DOI | MR | Zbl

[8] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Intersci. Publ., New York–London–Sydney, 1963 | MR | MR | Zbl | Zbl

[9] D. V. Tunitskii, “Monge–Ampére equations and characteristic connection functors”, Izv. Math., 65:6 (2001), 1243–1290 | DOI | MR | Zbl

[10] S. Lie, “Kurzes Résumé mehrerer neuer Theorien”, Gesammelte Abhandlungen, Bd. 3, Teubner, Leipzig; Aschehoug, Oslo, 1922, 1–4 | Zbl

[11] S. Lie, “Neue Integrationsmethode der Monge–Ampèreschen Gleichung”, Gesammelte Abhandlungen, Bd. 3, Teubner, Leipzig; Aschehoug, Oslo, 1922, 287–294 | Zbl

[12] S. Lie, “Untersuchungen üb Differentialgleihungen”, Gesammelte Abhandlungen, Bd. 3, Teubner, Leipzig; Aschehoug, Oslo, 1922, 537–547 | Zbl

[13] S. Lie, “Geschichtliche Bemerkungen zur allegemeinen Theorie der partiellen Differentialgleichungen erster Ordnung”, Gesammelte Abhandlungen, Bd. 7, Teubner, Leipzig; Aschehoug, Oslo, 1922, 175–217 | Zbl

[14] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes. Tome I: Problème de Cauchy. Caractéristiques. Intégrales intermédiaires, Hermann, Paris, 1896 | Zbl

[15] V. V. Lychagin, V. N. Rubtsov, “O teoremakh Sofusa Li dlya uravnenii Monzha–Ampera”, Dokl. AN BSSR, 27:5 (1983), 396–398 | MR | Zbl

[16] V. V. Lychagin, V. N. Rubtsov, I. V. Chekalov, “A classification of Monge–Ampére equations”, Ann. Sci. École Norm. Sup. (4), 26:3 (1993), 281–308 | MR | Zbl

[17] O. P. Chizh, “Giperbolicheskie uravneniya Monzha–Ampera s tranzitivnymi gruppami simmetrii”, Dokl. NAN Belarusi, 42:2 (1998), 45–48 | MR | Zbl

[18] O. P. Chizh, “Kontaktnaya geometriya uravnenii Monzha–Ampera”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 42:4 (1998), 52–56 | MR

[19] A. G. Kushner, “Kontaktnaya linearizatsiya nevyrozhdennykh uravnenii Monzha–Ampera”, Dvizheniya v obobschennykh prostranstvakh, Mezhvuzovskii sb. nauch. trudov Penzenskogo gos. pedagogicheskogo un-ta im. V. G. Belinskogo, Penza, 2005, 56–65

[20] A. G. Kushner, “Giperbolicheskie uravneniya Monzha–Ampera: problema Sofusa Li kontaktnoi linearizatsii”, Sb. nauch. tr. I Mezhdunarodnogo seminara “Simmetrii: teoreticheskii i metodicheskii aspekty”, Astrakhan, 2005, 20–23

[21] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl