Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_6_a6, author = {D. V. Tunitsky}, title = {Monge--Amp\`ere equations and tensorial functors}, journal = {Izvestiya. Mathematics }, pages = {1217--1263}, publisher = {mathdoc}, volume = {73}, number = {6}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a6/} }
D. V. Tunitsky. Monge--Amp\`ere equations and tensorial functors. Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1217-1263. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a6/
[1] R. O. Wells, jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood Cliffs, NJ, 1973 | MR | MR | Zbl
[2] V. V. Lychagin, “Contact geometry and non-linear second-order differential equations”, Russian Math. Surveys, 34:1 (1979), 149–180 | DOI | MR | Zbl | Zbl
[3] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Intersci. Publ., New York–London, 1962 | MR | MR | Zbl | Zbl
[4] Sh. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl
[5] T. Morimoto, “La géométrie des équations de Monge–Ampère”, C. R. Acad. Sci. Paris Sér. A-B, 289:1 (1979), 25–28 | MR | Zbl
[6] D. V. Tunitskii, “On the contact linearization of Monge–Ampere equations”, Izv. Math., 60:2 (1996), 425–451 | DOI | MR | Zbl
[7] D. V. Tunitskii, “Equivalence and characteristic connections of the Monge–Ampere equations”, Sb. Math., 188:5 (1997), 771–797 | DOI | MR | Zbl
[8] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Intersci. Publ., New York–London–Sydney, 1963 | MR | MR | Zbl | Zbl
[9] D. V. Tunitskii, “Monge–Ampére equations and characteristic connection functors”, Izv. Math., 65:6 (2001), 1243–1290 | DOI | MR | Zbl
[10] S. Lie, “Kurzes Résumé mehrerer neuer Theorien”, Gesammelte Abhandlungen, Bd. 3, Teubner, Leipzig; Aschehoug, Oslo, 1922, 1–4 | Zbl
[11] S. Lie, “Neue Integrationsmethode der Monge–Ampèreschen Gleichung”, Gesammelte Abhandlungen, Bd. 3, Teubner, Leipzig; Aschehoug, Oslo, 1922, 287–294 | Zbl
[12] S. Lie, “Untersuchungen üb Differentialgleihungen”, Gesammelte Abhandlungen, Bd. 3, Teubner, Leipzig; Aschehoug, Oslo, 1922, 537–547 | Zbl
[13] S. Lie, “Geschichtliche Bemerkungen zur allegemeinen Theorie der partiellen Differentialgleichungen erster Ordnung”, Gesammelte Abhandlungen, Bd. 7, Teubner, Leipzig; Aschehoug, Oslo, 1922, 175–217 | Zbl
[14] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes. Tome I: Problème de Cauchy. Caractéristiques. Intégrales intermédiaires, Hermann, Paris, 1896 | Zbl
[15] V. V. Lychagin, V. N. Rubtsov, “O teoremakh Sofusa Li dlya uravnenii Monzha–Ampera”, Dokl. AN BSSR, 27:5 (1983), 396–398 | MR | Zbl
[16] V. V. Lychagin, V. N. Rubtsov, I. V. Chekalov, “A classification of Monge–Ampére equations”, Ann. Sci. École Norm. Sup. (4), 26:3 (1993), 281–308 | MR | Zbl
[17] O. P. Chizh, “Giperbolicheskie uravneniya Monzha–Ampera s tranzitivnymi gruppami simmetrii”, Dokl. NAN Belarusi, 42:2 (1998), 45–48 | MR | Zbl
[18] O. P. Chizh, “Kontaktnaya geometriya uravnenii Monzha–Ampera”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 42:4 (1998), 52–56 | MR
[19] A. G. Kushner, “Kontaktnaya linearizatsiya nevyrozhdennykh uravnenii Monzha–Ampera”, Dvizheniya v obobschennykh prostranstvakh, Mezhvuzovskii sb. nauch. trudov Penzenskogo gos. pedagogicheskogo un-ta im. V. G. Belinskogo, Penza, 2005, 56–65
[20] A. G. Kushner, “Giperbolicheskie uravneniya Monzha–Ampera: problema Sofusa Li kontaktnoi linearizatsii”, Sb. nauch. tr. I Mezhdunarodnogo seminara “Simmetrii: teoreticheskii i metodicheskii aspekty”, Astrakhan, 2005, 20–23
[21] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl