Lower bounds for the rate of convergence of greedy algorithms
Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1197-1215

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a lower bound for the rate of convergence of a pure greedy algorithm in the spaces $\mathcal A_0(\mathcal D)$ and $\mathcal A_1(\mathcal D)$, and this bound turns out to be very close to the best known upper bound. We also obtain a precise lower bound for the rate of convergence of the orthogonal greedy algorithm in the space $\mathcal A_0(\mathcal D)$.
Keywords: pure greedy algorithm, best $n$-term approximation, rate of convergence.
Mots-clés : interpolation classes
@article{IM2_2009_73_6_a5,
     author = {E. D. Livshits},
     title = {Lower bounds for the rate of convergence of greedy algorithms},
     journal = {Izvestiya. Mathematics },
     pages = {1197--1215},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a5/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - Lower bounds for the rate of convergence of greedy algorithms
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 1197
EP  - 1215
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a5/
LA  - en
ID  - IM2_2009_73_6_a5
ER  - 
%0 Journal Article
%A E. D. Livshits
%T Lower bounds for the rate of convergence of greedy algorithms
%J Izvestiya. Mathematics 
%D 2009
%P 1197-1215
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a5/
%G en
%F IM2_2009_73_6_a5
E. D. Livshits. Lower bounds for the rate of convergence of greedy algorithms. Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1197-1215. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a5/