Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_6_a2, author = {A. V. Gasnikov}, title = {Time-asymptotic behaviour of a~solution of the {Cauchy} initial-value problem for a~conservation law with non-linear divergent viscosity}, journal = {Izvestiya. Mathematics }, pages = {1111--1148}, publisher = {mathdoc}, volume = {73}, number = {6}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a2/} }
TY - JOUR AU - A. V. Gasnikov TI - Time-asymptotic behaviour of a~solution of the Cauchy initial-value problem for a~conservation law with non-linear divergent viscosity JO - Izvestiya. Mathematics PY - 2009 SP - 1111 EP - 1148 VL - 73 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a2/ LA - en ID - IM2_2009_73_6_a2 ER -
%0 Journal Article %A A. V. Gasnikov %T Time-asymptotic behaviour of a~solution of the Cauchy initial-value problem for a~conservation law with non-linear divergent viscosity %J Izvestiya. Mathematics %D 2009 %P 1111-1148 %V 73 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a2/ %G en %F IM2_2009_73_6_a2
A. V. Gasnikov. Time-asymptotic behaviour of a~solution of the Cauchy initial-value problem for a~conservation law with non-linear divergent viscosity. Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1111-1148. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a2/
[1] Ya. B. Zeldovich, Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Vol. I, II, Academic Press, New York, 1966 | Zbl
[2] R. Courant, K. O. Friedrichs, Supersonic flow and shock waves, Intersci. Publ., New York, 1948 | MR | Zbl
[3] G. B. Whitham, Linear and nonlinear waves, Wiley, New York–London–Sydney, 1974 | MR | MR | Zbl
[4] L. A. Peletier, “The porous media equation”, Applications of nonlinear analysis in the physical sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, MA–London, 1981, 229–241 | MR | Zbl
[5] A. Harten, J. M. Hyman, P. D. Lax, B. Keyfitz, “On finite-difference approximations and entropy conditions for shocks”, Comm. Pure Appl. Math., 29:3 (1976), 297–322 | DOI | MR | Zbl
[6] V. M. Polterovich, G. M. Khenkin, “Matematicheskii analiz ekonomicheskikh modelei. Evolyutsionnaya model vzaimodeistviya protsessov sozdaniya i zaimstvovaniya tekhnologii”, Ekonomika i mat. metody, 24:6 (1988), 1071–1083 | MR
[7] G. M. Henkin, V. M. Polterovich, “Schumpeterian dynamics as a non-linear wave theory”, J. Math. Econom., 20:6 (1991), 551–590 | DOI | MR | Zbl
[8] L. M. Gelman, M. I. Levin, V. M. Polterovich, V. A. Spivak, “Modelirovanie dinamiki raspredeleniya predpriyatii otrasli po urovnyam effektivnosti (na primere chernoi metallurgii)”, Ekonomika i mat. metody, 29:3 (1993), 460–469
[9] G. M. Henkin, V. M. Polterovich, “A difference-differential analogue of the burgers equation: Stability of the two-wave behavior”, J. Nonlinear Sci., 4:1 (1994), 497–517 | DOI | MR | Zbl
[10] G. M. Henkin, V. M. Polterovich, “A difference-differential analogue of the Burgers equations and some models of economic development”, Discrete Contin. Dynam. Systems, 5:4 (1999), 697–728 | DOI | MR | Zbl
[11] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. (2), 29 (1963), 295–381 | MR | MR | Zbl | Zbl
[12] A. M. Ilin, O. A. Oleinik, “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51(93):2 (1960), 191–216 | MR | Zbl
[13] H. F. Weinberger, “Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7:5 (1990), 407–425 | MR | Zbl
[14] G. M. Henkin, A. A. Shananin, “Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations”, J. Math. Pures Appl. (9), 83:12 (2004), 1457–1500 | DOI | MR | Zbl
[15] G. M. Henkin, A. A. Shananin, A. E. Tumanov, “Estimates for solutions of Burgers type equations and some applications”, J. Math. Pures Appl. (9), 84:6 (2005), 717–752 | DOI | MR | Zbl
[16] G. M. Henkin, “Asymptotic structure for solutions of the Cauchy problem for Burgers type equations”, J. Fixed Point Theory Appl., 1:2 (2007), 239–291 | DOI | MR | Zbl
[17] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Matematika i mekhanika, 1:6 (1937), 1–26 | Zbl
[18] P. C. Fife, J. B. McLeod, “The approach of solutions of nonlinear diffusion equations to travelling front solutions”, Arch. Ration. Mech. Anal., 65:4 (1977), 335–361 | DOI | MR | Zbl
[19] A. I. Volpert, Vit. A. Volpert, Vl. A. Volpert, Traveling wave solutions of parabolic systems, Transl. Math. Monogr., 140, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[20] M. Mejai, Vit. Volpert, “Convergence to systems of waves for viscous scalar conservation laws”, Asymptot. Anal., 20:3–4 (1999), 351–366 | MR | Zbl
[21] Sh. Engelberg, S. Schochet, “Nonintegrable perturbations of scalar viscous shock profiles”, Asymptot. Anal., 48:1–2 (2006), 121–140 | MR | Zbl
[22] S. N. Kruzhkov, N. S. Petrosyan, “Asymptotic behaviour of the solutions of the Cauchy problem for non-linear first order equations”, Russian Math. Surveys, 42:5 (1987), 1–47 | DOI | MR | Zbl
[23] O. A. Oleinik, T. D. Venttsel, “Pervaya kraevaya zadacha i zadacha Koshi dlya kvazilineinykh uravnenii parabolicheskogo tipa”, Matem. sb., 41(83):1 (1957), 105–128 | MR | Zbl
[24] O. A. Olejnik, “Discontinuous solutions of non-linear differential equations”, Amer. Math. Soc. Transl. (2), 26 (1963), 95–172 | MR | MR | Zbl
[25] S. N. Bernstein, “Limitation des modules des dérivées successives des solutions des équations du type parabolique”, Dokl. AN SSSR, 18:7 (1938), 385–389 | Zbl
[26] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[27] S. N. Kruzkov, “Nonlinear parabolic equations in two independent variables”, Trans. Moscow Math. Soc., 16 (1967), 355–373 | MR | Zbl | Zbl
[28] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl | Zbl
[29] D. Hoff, J. Smoller, “Solutions in the large for certain nonlinear parabolic systems”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 213–235 | MR | Zbl
[30] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl | Zbl
[31] M. G. Crandall, L. Tartar, “Some relations between nonexpansive and order preserving mappings”, Proc. Amer. Math. Soc., 78:3 (1980), 385–390 | DOI | MR | Zbl
[32] D. Serre, “$L^1$-stability of nonlinear waves in scalar conservation laws”, Evolutionary equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 473–553 | DOI | MR | Zbl
[33] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren Math. Wiss., 325, Springer-Verlag, Berlin–Heidelberg, 2005 | MR | Zbl
[34] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984 | MR | Zbl
[35] H. Freistühler, D. Serre, “$L^1$ stability of shock waves in scalar viscous conservation laws”, Comm. Pure Appl. Math., 51:3 (1998), 291–301 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[36] H. Matano, “Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29:2 (1982), 401–441 | MR | Zbl
[37] I. P. Natanson, Theory of functions of real variable, Frederick Ungar, New York, 1955 | MR | MR | Zbl | Zbl
[38] O. A. Olejnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Amer. Math. Soc. Transl. (2), 33 (1963), 285–290 | MR | Zbl | Zbl
[39] S. Osher, J. Ralston, “$L^1$ stability of travelling waves with applications to convective porous media flow”, Comm. Pure Appl. Math., 35:6 (1982), 737–749 | DOI | MR | Zbl
[40] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure and Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[41] D. Serre, “Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques”, Nonlinear partial differential equations and their applications (Paris, 1997–1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, 647–654 | MR | Zbl
[42] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[43] V. N. Gabušin, “Inequalities between derivatives in $L_p$-metrics for $0
\le\infty$”, Math. USSR-Izv., 10:4 (1976), 823–844 | DOI | MR | Zbl[44] V. N. Gabušin, “Inequalities between derivatives in $L_p$-metrics for $0
\le\infty$”, Differential Equations, 24:10 (1988), 1088–1094 | MR | Zbl | Zbl[45] V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI | MR | Zbl
[46] Ch. Abourjaily, Ph. Benilan, “Symmetrization of quasilinear parabolic problems”, Rev. Un. Mat. Argentina, 41:1 (1998), 1–13 | MR | Zbl
[47] A. V. Gasnikov, “On the intermediate asymptotic of the solution to the Cauchy problem for a quasilinear equation of parabolic type with a Monotone Initial Condition”, J. Comput. Systems Sci. Internat., 47:3 (2008), 475–484 | DOI
[48] A. V. Gasnikov, “Convergence in the form of a solution to the Cauchy problem for a quasilinear parabolic equation with a monotone initial condition to a system of waves”, Comput. Math. Math. Phys., 48:8 (2008), 1376–1405 | DOI | MR
[49] B. L. Roždestvenskiǐ, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl
[50] D. Serre, System of conservation laws. Vol. I, II, Cambridge Univ. Press, Cambridge, 1999, 2000 | MR | MR | Zbl
[51] T. P. Liu, “Admissible solutions of hyperbolic conservation laws”, Mem. Amer. Math. Soc., 30:240 (1981), 1–78 | MR | Zbl
[52] K.-S. Cheng, “Asymptotic behavior of solutions of a conservation law without convexity conditions”, J. Differential Equations, 40:3 (1981), 343–376 | DOI | MR | Zbl
[53] N. S. Petrosyan, “The asymptotic behaviour of the solution to the Cauchy problem for a quasilinear first-order equation with a non-convex state function”, Russian Math. Surveys, 38:2 (1983), 194–195 | DOI | MR | Zbl
[54] N. S. Petrosyan, “Asymptotic properties of a solution of Cauchy's problem for a first-order quasilinear equation”, Differential Equations, 20:3 (1984), 390–395 | MR | Zbl