Embeddings of model subspaces of the Hardy space: compactness
Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1077-1100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of the embedding operators of model subspaces $K^p_{\Theta}$ (defined by inner functions) in the Hardy space $H^p$ (coinvariant subspaces of the shift operator). We find a criterion for the embedding of $K^p_{\Theta}$ in $L^p(\mu)$ to be compact similar to the Volberg–Treil theorem on bounded embeddings, and give a positive answer to a question of Cima and Matheson. The proof is based on Bernstein-type inequalities for functions in $K^p_{\Theta}$. We investigate measures $\mu$ such that the embedding operator belongs to some Schatten–von Neumann ideal.
Keywords: Hardy space, inner function, embedding theorem, Carleson measure.
@article{IM2_2009_73_6_a0,
     author = {A. D. Baranov},
     title = {Embeddings of model subspaces of the {Hardy} space: compactness},
     journal = {Izvestiya. Mathematics },
     pages = {1077--1100},
     publisher = {mathdoc},
     volume = {73},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a0/}
}
TY  - JOUR
AU  - A. D. Baranov
TI  - Embeddings of model subspaces of the Hardy space: compactness
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 1077
EP  - 1100
VL  - 73
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a0/
LA  - en
ID  - IM2_2009_73_6_a0
ER  - 
%0 Journal Article
%A A. D. Baranov
%T Embeddings of model subspaces of the Hardy space: compactness
%J Izvestiya. Mathematics 
%D 2009
%P 1077-1100
%V 73
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a0/
%G en
%F IM2_2009_73_6_a0
A. D. Baranov. Embeddings of model subspaces of the Hardy space: compactness. Izvestiya. Mathematics , Tome 73 (2009) no. 6, pp. 1077-1100. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a0/

[1] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[2] A. B. Aleksandrov, “Invariant subspaces of the shift operator. Axiomatic approach”, J. Soviet Math., 22:6 (1983), 1695–1708 | DOI | MR | Zbl | Zbl

[3] N. K. Nikol'skiǐ, Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin–Heidelberg, 1986 | MR | MR | Zbl | Zbl

[4] N. K. Nikolski, Operators, functions, and systems: an easy reading. { Vol. $2$}: Model operators and systems, Math. Surveys Monogr., 93, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] J. A. Cima, W. T. Ross, The backward shift on the Hardy space, Math. Surveys Monogr., 79, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[6] S. V. Hruščev, N. K. Nikol'skii, B. S. Pavlov, “Unconditional bases of exponentials and of reproducing kernels”, Complex analysis and spectral theory, Lecture Notes in Math., 864, Springer-Verlag, Berlin–New York, 1981, 214–335 | DOI | MR | Zbl

[7] B. Cohn, “Carleson measures for functions orthogonal to invariant subspaces”, Pacific J. Math., 103:2 (1982), 347–364 | MR | Zbl

[8] S. C. Power, “Vanishing Carleson measures”, Bull. Lond. Math. Soc., 12:3 (1980), 207–210 | DOI | MR | Zbl

[9] O. Blasco, H. Jarchow, “A note on Carleson measures for Hardy spaces”, Acta Sci. Math. (Szeged), 71:1–2 (2005), 371–389 | MR | Zbl

[10] F. Nazarov, A. Volberg, “The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces $K_\theta$”, J. Anal. Math., 87:1 (2002), 385–414 | DOI | MR | Zbl

[11] A. L. Vol'berg, S. R. Treil', “Imbedding theorems for the invariant subspaces of the backward shift operator”, J. Soviet Math., 42:2 (1988), 1562–1572 | DOI | MR | Zbl

[12] A. B. Aleksandrov, “On embedding theorems for coinvariant subspaces of the shift operator. II”, J. Math. Sci. (New York), 110:5 (2002), 2907–2929 | DOI | MR | Zbl

[13] W. S. Cohn, “Carleson measures and operators on star-invariant subspaces”, J. Operator Theory, 15:1 (1986), 181–202 | MR | Zbl

[14] K. M. Dyakonov, “Embedding theorems for star-invariant subspaces generated by smooth inner functions”, J. Funct. Anal., 157:2 (1998), 588–598 | DOI | MR | Zbl

[15] A. L. Volberg, “Thin and thick families of rational fractions”, Complex analysis and spectral theory, Lect. Notes in Math., 864, Springer-Verlag, Berlin–New York, 1981, 440–480 | DOI | MR | Zbl

[16] J. A. Cima, A. L. Matheson, “On Carleson embeddings of star-invariant supspaces”, Quaest. Math., 26:3 (2003), 279–288 | MR | Zbl

[17] D. N. Clark, “One dimensional perturbations of restricted shifts”, J. Analyse Math., 25:1 (1972), 169–191 | DOI | MR | Zbl

[18] A. D. Baranov, “Weighted Bernstein-type inequalities, and embedding theorems for the model subspaces”, St. Petersburg Math. J., 15:5 (2004), 733–752 | DOI | MR | Zbl

[19] A. D. Baranov, “Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings”, J. Funct. Anal., 223:1 (2005), 116–146 | DOI | MR | Zbl

[20] A. Baranov, “Stability of the bases and frames reproducing kernels in model spaces”, Ann. Inst. Fourier (Grenoble), 55:7 (2005), 2399–2422 | MR | Zbl

[21] D. H. Luecking, “Trace ideal criteria for Toeplitz operators”, J. Funct. Anal., 73:2 (1987), 345–368 | DOI | MR | Zbl

[22] O. G. Parfenov, “On properties of imbedding operators of certain classes of analytic functions”, St. Petersburg Math. J., 3:2 (1992), 425–446 | MR | Zbl | Zbl

[23] O. G. Parfenov, “Weighted estimates of the Fourier transformation”, J. Math. Sci. (New York), 87:5 (1997), 3878–3885 | DOI | MR | Zbl | Zbl

[24] A. B. Aleksandrov, “Inner functions and related spaces of pseudo-continuable functions”, J. Soviet Math., 63:2 (1993), 115–129 | DOI | MR | Zbl | Zbl

[25] P. R. Ahern, D. N. Clark, “Radial limits and invariant subspaces”, Amer. J. Math., 92:2 (1970), 332–342 | DOI | MR | Zbl

[26] W. S. Cohn, “Radial limits and star invariant subspaces of bounded mean oscillation”, Amer. J. Math., 108:3 (1986), 719–749 | DOI | MR | Zbl

[27] M. B. Levin, “An estimate for the derivative of a meromorphic function on the boundary of a region”, Soviet Math. Dokl., 15 (1974), 831–834 | MR | Zbl

[28] P. Borwein, T. Erdélyi, “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 412–423 | MR | Zbl

[29] K. M. D'yakonov, “Entire functions of exponential type and model subspaces in $H^p$”, J. Math. Sci., 71:1 (1994), 2222–2233 | DOI | MR | Zbl

[30] K. M. Dyakonov, “Differentiation in star-invariant subspaces. I: Boundedness and compactness”, J. Funct. Anal., 192:2 (2002), 364–386 | DOI | MR | Zbl

[31] A. D. Baranov, “Estimates of the $L^p$-norms of derivatives in spaces of entire functions”, J. Math. Sci. (N. Y.), 129:4 (2005), 3927–3943 | DOI | MR | Zbl

[32] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl