On a~two-dimensional analogue of Szemer\'edi's theorem in Abelian groups
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 1033-1075

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite Abelian group and $A\subseteq G\times G$ a set of cardinality at least $|G|^2/(\log\log|G|)^c$, where $c>0$ is an absolute constant. We prove that $A$ contains a triple $\{(k,m),(k+d,m),(k,m+d)\}$ with $d\neq0$. This is a two-dimensional generalization of Szemerédi's theorem on arithmetic progressions.
Keywords: two-dimensional generalizations of Szemerédi's theorem, problems on arithmetic progressions, Roth's theorem, Bohr sets.
@article{IM2_2009_73_5_a6,
     author = {I. D. Shkredov},
     title = {On a~two-dimensional analogue of {Szemer\'edi's} theorem in {Abelian} groups},
     journal = {Izvestiya. Mathematics },
     pages = {1033--1075},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a6/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On a~two-dimensional analogue of Szemer\'edi's theorem in Abelian groups
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 1033
EP  - 1075
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a6/
LA  - en
ID  - IM2_2009_73_5_a6
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On a~two-dimensional analogue of Szemer\'edi's theorem in Abelian groups
%J Izvestiya. Mathematics 
%D 2009
%P 1033-1075
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a6/
%G en
%F IM2_2009_73_5_a6
I. D. Shkredov. On a~two-dimensional analogue of Szemer\'edi's theorem in Abelian groups. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 1033-1075. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a6/