Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_5_a6, author = {I. D. Shkredov}, title = {On a~two-dimensional analogue of {Szemer\'edi's} theorem in {Abelian} groups}, journal = {Izvestiya. Mathematics }, pages = {1033--1075}, publisher = {mathdoc}, volume = {73}, number = {5}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a6/} }
I. D. Shkredov. On a~two-dimensional analogue of Szemer\'edi's theorem in Abelian groups. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 1033-1075. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a6/
[1] E. Szemerédi, “On sets of integers containing no $k$ elements in arithmetic progression”, Acta Arith., 27 (1975), 199–245 | MR | Zbl
[2] T. Tao, V. H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[3] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl
[4] B. L. van der Waerden, “Beweis einer Baudetschen Vermutung”, Nieuw Archief, 15 (1927), 212–216 | Zbl
[5] K. F. Roth, “On certain sets of integers”, J. London Math. Soc., 28 (1953), 104–109 | DOI | MR | Zbl
[6] J. Bourgain, “Roth's theorem on progressions revisited”, J. Anal. Math., 104:1 (2008), 155–192 | DOI | MR | Zbl
[7] H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions”, J. Analyse Math., 31:1 (1977), 204–256 | DOI | MR | Zbl
[8] H. Furstenberg, Y. Katznelson, “An ergodic Szemerédi theorem for commuting transformations”, J. Analyse Math., 34:1 (1978), 275–291 | DOI | MR | Zbl
[9] H. Furstenberg, Y. Katznelson, D. Ornstein, “The ergodic theoretical proof of Szemerédi's theorem”, Bull. Amer. Math. Soc. (N.S.), 7:3 (1982), 527–552 | DOI | MR
[10] F. A. Behrend, “On sets of integers which contain no three terms in arithmetical progression”, Proc. Nat. Acad. Sci. U.S.A., 23 (1946), 331–332 | DOI | MR | Zbl
[11] R. A. Rankin, “Sets of integers containing not more than a given number of terms in arithmetical progression”, Proc. Roy. Soc. Edinburgh Sect. A, 65:4 (1961), 332–344 | MR | Zbl
[12] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl
[13] M. Ajtai, E. Szemerédi, “Sets of lattice points that form no squares”, Stud. Sci. Math. Hungar., 9 (1974), 9–11 | MR | Zbl
[14] I. D. Shkredov, “On a generalization of Szemerédi's theorem”, Dokl. Math., 72:3 (2005), 899–902 | MR | Zbl
[15] I. D. Shkredov, “On a generalization of Szemerédi's theorem”, Proc. London Math. Soc., 93:3 (2006), 723–760 | DOI | MR | Zbl
[16] J. Solymosi, “Note on a generalization of Roth's theorem”, Discrete and computational geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 825–827 | MR | Zbl
[17] V. H. Vu, “On a question of Gowers”, Ann. Comb., 6:2 (2002), 229–233 | DOI | MR | Zbl
[18] I. D. Shkredov, “On a problem of Gowers”, Izv. Math., 70:2 (2006), 385–425 | DOI | MR | Zbl
[19] I. D. Shkredov, “On a problem of Gowers”, Dokl. Math., 71:1 (2005), 46–48 | MR
[20] B. Green, “Finite field models in additive combinatorics”, Surveys in combinatorics 2005 (University of Durham, Durham, UK, 2005), London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 1–27 | MR | Zbl
[21] V.Ḟ. Lev, “Progression-free sets in finite Abelian groups”, J. Number Theory, 104:1 (2004), 162–169 | DOI | MR | Zbl
[22] T. C. Brown, J. C. Buhler, “A density version of a geometric Ramsey theorem”, J. Combin. Theory Ser. A, 32:1 (1982), 20–34 | DOI | MR | Zbl
[23] P. Frankl, R. L. Graham, V. Rödl, “On subsets of abelian groups with no 3-term arithmetic progression”, J. Combin. Theory Ser. A, 45:1 (1987), 157–161 | DOI | MR | Zbl
[24] R. Meshulam, “On subsets of finite abelian groups with no 3-term arithmetic progressions”, J. Combin. Theory Ser. A, 71:1 (1995), 168–172 | DOI | MR | Zbl
[25] V. F. Lev, “Progression-free sets in finite Abelian groups”, J. Number Theory, 104:1 (2004), 162–169 | DOI | MR | Zbl
[26] M. T. Lacey, W. McClain, On an argument of Shkredov on two-dimensional corners, arXiv: math.CO/0510491
[27] J. Bourgain, “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl
[28] B. Green, “A Szemerédi-type regularity lemma in Abelian groups, with applications”, Geom. Funct. Anal., 15:2 (2005), 340–376 | DOI | MR | Zbl
[29] T. Tao, Lecture notes 5 for Math 254A: Behrend's example; Bourgain's refinement of Roth's theorem, http://math.ucla.edu/ tao/254a.1.03w/
[30] F. R. K. Chung, R. L. Graham, R. M. Wilson, “Quasi-random graphs”, Combinatorica, 9:4 (1989), 345–362 | DOI | MR | Zbl
[31] W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hypergraphs”, Combin. Probab. Comput., 15:1–2 (2006), 143–184 | DOI | MR | Zbl