Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_5_a5, author = {V. M. Miklyukov}, title = {On {Harnack's} inequality for almost solutions of elliptic equations}, journal = {Izvestiya. Mathematics }, pages = {1023--1031}, publisher = {mathdoc}, volume = {73}, number = {5}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a5/} }
V. M. Miklyukov. On Harnack's inequality for almost solutions of elliptic equations. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 1023-1031. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a5/
[1] Ju. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, New York, 1993 | MR | Zbl
[2] V. M. Miklyukov, “$A$-solutions with singularities as almost solutions”, Sb. Math., 197:11 (2006), 1587–1605 | DOI | MR | Zbl
[3] E. D. Callender, “Hölder continuity of $n$-dimensional quasi-conformal mappings”, Pacific J. Math., 10:2 (1960), 499–515 | MR | Zbl
[4] V. M. Miklyukov, Geometricheskii analiz, Izd-vo VolGU, Volgograd, 2007
[5] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[6] O. Martio, V. M. Miklyukov, M. Vuorinen, “Harnack's inequality for $p$-harmonic functions on Riemannian manifolds for different exhaustions”, Kompleksnyi analiz v sovremennoi matematike, Fazis, M., 2001, 201–230 | MR | Zbl
[7] G. D. Suvorov, Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova dumka, Kiev, 1985 | MR | Zbl
[8] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | MR | Zbl | Zbl