On Harnack's inequality for almost solutions of elliptic equations
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 1023-1031.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an analogue of Harnack's inequality for almost solutions of $A$-harmonic equations.
Keywords: Harnack's inequality, almost solution, equation of elliptic type.
@article{IM2_2009_73_5_a5,
     author = {V. M. Miklyukov},
     title = {On {Harnack's} inequality for almost solutions of elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1023--1031},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a5/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - On Harnack's inequality for almost solutions of elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 1023
EP  - 1031
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a5/
LA  - en
ID  - IM2_2009_73_5_a5
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T On Harnack's inequality for almost solutions of elliptic equations
%J Izvestiya. Mathematics 
%D 2009
%P 1023-1031
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a5/
%G en
%F IM2_2009_73_5_a5
V. M. Miklyukov. On Harnack's inequality for almost solutions of elliptic equations. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 1023-1031. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a5/

[1] Ju. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., Clarendon Press, Oxford Univ. Press, New York, 1993 | MR | Zbl

[2] V. M. Miklyukov, “$A$-solutions with singularities as almost solutions”, Sb. Math., 197:11 (2006), 1587–1605 | DOI | MR | Zbl

[3] E. D. Callender, “Hölder continuity of $n$-dimensional quasi-conformal mappings”, Pacific J. Math., 10:2 (1960), 499–515 | MR | Zbl

[4] V. M. Miklyukov, Geometricheskii analiz, Izd-vo VolGU, Volgograd, 2007

[5] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[6] O. Martio, V. M. Miklyukov, M. Vuorinen, “Harnack's inequality for $p$-harmonic functions on Riemannian manifolds for different exhaustions”, Kompleksnyi analiz v sovremennoi matematike, Fazis, M., 2001, 201–230 | MR | Zbl

[7] G. D. Suvorov, Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova dumka, Kiev, 1985 | MR | Zbl

[8] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | MR | Zbl | Zbl