Some remarks on the $\ell$-adic regulator. V.
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 959-1021

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebraic number field $k$ that is either a field of CM-type (real or imaginary) or a field having Abelian completions at all places over $\ell$ and satisfying the feeble conjecture on the $\ell$-adic regulator [1] and its cyclotomic $\mathbb{Z}_\ell$-extension $k_\infty$, we obtain formulae that represent for all sufficiently large $n$ the $\ell$-adic exponent of the number $R_\ell(k_{n+1})/R_\ell(k_n)$, where $R_\ell(k_n)$ is the $\ell$-adic regulator in the sense of [1]. We discuss the meaning of the Iwasawa invariants occurring in these formulae and the resemblance between our results and the Brauer–Siegel theorem.
Keywords: Iwasawa theory, $\ell$-adic regulator, Iwasawa invariants.
Mots-clés : cyclotomic $Z_\ell$-extensions
@article{IM2_2009_73_5_a4,
     author = {L. V. Kuz'min},
     title = {Some remarks on the $\ell$-adic regulator. {V.}},
     journal = {Izvestiya. Mathematics },
     pages = {959--1021},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Some remarks on the $\ell$-adic regulator. V.
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 959
EP  - 1021
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/
LA  - en
ID  - IM2_2009_73_5_a4
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Some remarks on the $\ell$-adic regulator. V.
%J Izvestiya. Mathematics 
%D 2009
%P 959-1021
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/
%G en
%F IM2_2009_73_5_a4
L. V. Kuz'min. Some remarks on the $\ell$-adic regulator. V.. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 959-1021. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/