Mots-clés : cyclotomic $Z_\ell$-extensions
@article{IM2_2009_73_5_a4,
author = {L. V. Kuz'min},
title = {Some remarks on the $\ell$-adic regulator. {V.}},
journal = {Izvestiya. Mathematics},
pages = {959--1021},
year = {2009},
volume = {73},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/}
}
L. V. Kuz'min. Some remarks on the $\ell$-adic regulator. V.. Izvestiya. Mathematics, Tome 73 (2009) no. 5, pp. 959-1021. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/
[1] L. V. Kuz'min, “Some remarks on the $l$-adic Dirichlet theorem and the $l$-adic regulator”, Math. USSR-Izv., 19:3 (1982), 445–478 | DOI | MR | Zbl
[2] S. Lang, Cyclotomic fields. I, II, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990 | MR | Zbl
[3] L. V. Kuz'min, “Some remarks on the $l$-adic regulator. II”, Math. USSR-Izv., 35:1 (1990), 113–144 | DOI | MR | Zbl
[4] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. III”, Math. USSR-Izv., 63:6 (1999), 1089–1138 | DOI | MR | Zbl
[5] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. IV”, Izv. Math., 64:2 (2000), 265–310 | DOI | MR | Zbl
[6] J.-P. Wintenberger, “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4), 16:1 (1983), 59–89 | MR | Zbl
[7] L. V. Kuz'min, “A new proof of some duality theorem on the $\ell$-adic logarithms of local units”, J. Math. Sci. (New York), 95:1 (1999), 1996–2005 | DOI | MR | Zbl
[8] L. V. Kuz'min, “An analog of the Riemann–Hurwitz formula for one type of $l$-extension of algebraic number fields”, Math. USSR-Izv., 36:2 (1991), 325–347 | DOI | MR | Zbl
[9] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl | Zbl
[10] J. T. Tate, “$p$-divisible groups”, Proc. of Conference on local Fields (Driebergen, 1966), Springer-Verlag, Berlin, 1967, 158–183 | MR | Zbl
[11] L. V. Kuz'min, “New explicit formulas for the norm residue symbol, and their applications”, Math. USSR-Izv., 37:3 (1991), 555–586 | DOI | MR | Zbl | Zbl