Some remarks on the $\ell$-adic regulator. V.
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 959-1021.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebraic number field $k$ that is either a field of CM-type (real or imaginary) or a field having Abelian completions at all places over $\ell$ and satisfying the feeble conjecture on the $\ell$-adic regulator [1] and its cyclotomic $\mathbb{Z}_\ell$-extension $k_\infty$, we obtain formulae that represent for all sufficiently large $n$ the $\ell$-adic exponent of the number $R_\ell(k_{n+1})/R_\ell(k_n)$, where $R_\ell(k_n)$ is the $\ell$-adic regulator in the sense of [1]. We discuss the meaning of the Iwasawa invariants occurring in these formulae and the resemblance between our results and the Brauer–Siegel theorem.
Keywords: Iwasawa theory, $\ell$-adic regulator, Iwasawa invariants.
Mots-clés : cyclotomic $Z_\ell$-extensions
@article{IM2_2009_73_5_a4,
     author = {L. V. Kuz'min},
     title = {Some remarks on the $\ell$-adic regulator. {V.}},
     journal = {Izvestiya. Mathematics },
     pages = {959--1021},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Some remarks on the $\ell$-adic regulator. V.
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 959
EP  - 1021
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/
LA  - en
ID  - IM2_2009_73_5_a4
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Some remarks on the $\ell$-adic regulator. V.
%J Izvestiya. Mathematics 
%D 2009
%P 959-1021
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/
%G en
%F IM2_2009_73_5_a4
L. V. Kuz'min. Some remarks on the $\ell$-adic regulator. V.. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 959-1021. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a4/

[1] L. V. Kuz'min, “Some remarks on the $l$-adic Dirichlet theorem and the $l$-adic regulator”, Math. USSR-Izv., 19:3 (1982), 445–478 | DOI | MR | Zbl

[2] S. Lang, Cyclotomic fields. I, II, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990 | MR | Zbl

[3] L. V. Kuz'min, “Some remarks on the $l$-adic regulator. II”, Math. USSR-Izv., 35:1 (1990), 113–144 | DOI | MR | Zbl

[4] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. III”, Math. USSR-Izv., 63:6 (1999), 1089–1138 | DOI | MR | Zbl

[5] L. V. Kuz'min, “Some remarks on the $\ell$-adic regulator. IV”, Izv. Math., 64:2 (2000), 265–310 | DOI | MR | Zbl

[6] J.-P. Wintenberger, “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4), 16:1 (1983), 59–89 | MR | Zbl

[7] L. V. Kuz'min, “A new proof of some duality theorem on the $\ell$-adic logarithms of local units”, J. Math. Sci. (New York), 95:1 (1999), 1996–2005 | DOI | MR | Zbl

[8] L. V. Kuz'min, “An analog of the Riemann–Hurwitz formula for one type of $l$-extension of algebraic number fields”, Math. USSR-Izv., 36:2 (1991), 325–347 | DOI | MR | Zbl

[9] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl | Zbl

[10] J. T. Tate, “$p$-divisible groups”, Proc. of Conference on local Fields (Driebergen, 1966), Springer-Verlag, Berlin, 1967, 158–183 | MR | Zbl

[11] L. V. Kuz'min, “New explicit formulas for the norm residue symbol, and their applications”, Math. USSR-Izv., 37:3 (1991), 555–586 | DOI | MR | Zbl | Zbl