On Hausdorff ordered structures
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 939-958.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a classification of problems on the existence of structures such as limits, gaps, towers and scales in Hausdorff partially ordered sets of infinite sequences, including sequences with real terms and various partial order relations.
Keywords: Hausdorff ordered structure, tower, limit.
Mots-clés : Hausdorff gap
@article{IM2_2009_73_5_a3,
     author = {V. G. Kanovei},
     title = {On {Hausdorff} ordered structures},
     journal = {Izvestiya. Mathematics },
     pages = {939--958},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a3/}
}
TY  - JOUR
AU  - V. G. Kanovei
TI  - On Hausdorff ordered structures
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 939
EP  - 958
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a3/
LA  - en
ID  - IM2_2009_73_5_a3
ER  - 
%0 Journal Article
%A V. G. Kanovei
%T On Hausdorff ordered structures
%J Izvestiya. Mathematics 
%D 2009
%P 939-958
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a3/
%G en
%F IM2_2009_73_5_a3
V. G. Kanovei. On Hausdorff ordered structures. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 939-958. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a3/

[1] P. du Bois-Reymond, “Sur la grandeur relative des infinis des fonctions”, Ann. Mat. Pura Appl. (2), 4:1 (1870), 338–353 | DOI | Zbl

[2] J. Hadamard, “Sur les caractères de convergence des séries a termes positifs et sur les fonctions indéfiniment croissantes”, Acta Math., 18:1 (1894), 319–336 | DOI | MR | Zbl

[3] É. Borel, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris, 1898 | MR | Zbl

[4] G. H. Hardy, “A theorem concerning the infinite cardinal numbers”, Q. J. Pure Appl. Math., 35 (1903), 87–94 | Zbl

[5] F. Hausdorff, “Untersuchungen über Ordnungstypen”, Leipz. Ber., 59 (1907), 84–159 | Zbl

[6] F. Hausdorff, “Die Graduierung nach dem Endverlauf”, Leipzig Abh., 31 (1909), 297–334 | Zbl

[7] E. K. van Douwen, “The integers and topology”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 111–167 | MR | Zbl

[8] R. Frankiewicz, P. Zbierski, Hausdorff gaps and limits, Stud. Logic Found. Math., 132, North-Holland, Amsterdam, 1994 | MR | Zbl

[9] V. I. Malykhin, “Topology and forcing”, Russian Math. Surveys, 38:1 (1983), 77–136 | DOI | MR | Zbl | Zbl

[10] M. Scheepers, “Gaps in $\omega^\omega$”, Set theory of the reals (Bar-Ilan Univ., Ramat-Gan, Israel, 1991), Israel Math. Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1993, 439–561 | MR | Zbl

[11] F. Rothberger, “Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété $C$”, Proc. Cambridge Philos. Soc., 37 (1941), 109–126 | DOI | MR | Zbl

[12] F. Rothberger, “On some problems of Hausdorff and of Sierpiński”, Fund. Math., 35 (1948), 29–46 | MR | Zbl

[13] M. Scheepers, “Cardinals of countable cofinality and eventual domination”, Order, 11:3 (1994), 221–235 | DOI | MR | Zbl

[14] F. Hausdorff, “Summen von $\aleph_1$ Mengen”, Fund. Math., 26 (1936), 241–255 | Zbl

[15] N. Lusin, “Sur les parties de la suite naturelle des nombres entiers”, Dokl. AN SSSR, 40:5 (1943), 175–178 | MR | Zbl

[16] N. N. Luzin, “O chastyakh naturalnogo ryada”, Izv. AN SSSR. Ser. matem., 11:5 (1947), 403–410 | MR

[17] V. G. Kanovei, “The development of the descriptive theory of sets under the influence of the work of Luzin”, Russian Math. Surveys, 40:3 (1985), 135–180 | DOI | MR | Zbl | Zbl

[18] P. L. Dordal, “Towers in $[\omega]^\omega$ and $\omega^\omega$”, Ann. Pure Appl. Logic, 45:3 (1989), 247–276 | DOI | MR | Zbl

[19] K. Kunen, Set theory. An introduction to independence proofs, Stud. Logic Found. Math., 102, North-Holland, Amsterdam, 1980 | MR | Zbl

[20] M. E. Rudin, “Martin's axiom”, Handbook of mathematical logic, North-Holland, Amsterdam–New York–Oxford, 1977, 491–501 | MR | Zbl

[21] D. A. Martin, R. M. Solovay, “Internal Cohen extensions”, Ann. Math. Logic, 2:2 (1970), 143–178 | DOI | MR | Zbl

[22] S. H. Hechler, “Independence results concerning a problem of N. Lusin”, Math. Systems Theory, 4:3 (1970), 316–321 | DOI | MR | Zbl

[23] S. H. Hechler, “On the existence of certain cofinal subsets of ${}^{\omega}\omega$”, Axiomatic set theory, Proc. Sympos. Pure Math. (Univ. California, Los Angeles, CA, 1967), Amer. Math. Soc., Providence, RI, 1974, 155–173 | MR | Zbl

[24] M. R. Burke, “A proof of Hechler's theorem on embedding $\aleph_1$-directed sets cofinally into $(\omega^\omega,^*)$”, Arch. Math. Logic, 36:6 (1997), 399–403 | DOI | MR | Zbl

[25] R. C. Solomon, “Families of sets and functions”, Czechoslovak Math. J., 27:4 (1977), 556–559 | MR | Zbl

[26] R. Solovay, “Introductory note to Gödel *1970a, *1970b, *1970c”, Collected works. Vol. III. Unpublished essays and lectures, Clarendon Press, Oxford Univ. Press, New York, 1995, 405–420 | MR | Zbl

[27] N. N. Luzin, Sobranie sochinenii, t. II. Deskriptivnaya teoriya mnozhestv, Izd-vo AN SSSR, M., 1958 | MR | Zbl