Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_5_a3, author = {V. G. Kanovei}, title = {On {Hausdorff} ordered structures}, journal = {Izvestiya. Mathematics }, pages = {939--958}, publisher = {mathdoc}, volume = {73}, number = {5}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a3/} }
V. G. Kanovei. On Hausdorff ordered structures. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 939-958. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a3/
[1] P. du Bois-Reymond, “Sur la grandeur relative des infinis des fonctions”, Ann. Mat. Pura Appl. (2), 4:1 (1870), 338–353 | DOI | Zbl
[2] J. Hadamard, “Sur les caractères de convergence des séries a termes positifs et sur les fonctions indéfiniment croissantes”, Acta Math., 18:1 (1894), 319–336 | DOI | MR | Zbl
[3] É. Borel, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris, 1898 | MR | Zbl
[4] G. H. Hardy, “A theorem concerning the infinite cardinal numbers”, Q. J. Pure Appl. Math., 35 (1903), 87–94 | Zbl
[5] F. Hausdorff, “Untersuchungen über Ordnungstypen”, Leipz. Ber., 59 (1907), 84–159 | Zbl
[6] F. Hausdorff, “Die Graduierung nach dem Endverlauf”, Leipzig Abh., 31 (1909), 297–334 | Zbl
[7] E. K. van Douwen, “The integers and topology”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 111–167 | MR | Zbl
[8] R. Frankiewicz, P. Zbierski, Hausdorff gaps and limits, Stud. Logic Found. Math., 132, North-Holland, Amsterdam, 1994 | MR | Zbl
[9] V. I. Malykhin, “Topology and forcing”, Russian Math. Surveys, 38:1 (1983), 77–136 | DOI | MR | Zbl | Zbl
[10] M. Scheepers, “Gaps in $\omega^\omega$”, Set theory of the reals (Bar-Ilan Univ., Ramat-Gan, Israel, 1991), Israel Math. Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1993, 439–561 | MR | Zbl
[11] F. Rothberger, “Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété $C$”, Proc. Cambridge Philos. Soc., 37 (1941), 109–126 | DOI | MR | Zbl
[12] F. Rothberger, “On some problems of Hausdorff and of Sierpiński”, Fund. Math., 35 (1948), 29–46 | MR | Zbl
[13] M. Scheepers, “Cardinals of countable cofinality and eventual domination”, Order, 11:3 (1994), 221–235 | DOI | MR | Zbl
[14] F. Hausdorff, “Summen von $\aleph_1$ Mengen”, Fund. Math., 26 (1936), 241–255 | Zbl
[15] N. Lusin, “Sur les parties de la suite naturelle des nombres entiers”, Dokl. AN SSSR, 40:5 (1943), 175–178 | MR | Zbl
[16] N. N. Luzin, “O chastyakh naturalnogo ryada”, Izv. AN SSSR. Ser. matem., 11:5 (1947), 403–410 | MR
[17] V. G. Kanovei, “The development of the descriptive theory of sets under the influence of the work of Luzin”, Russian Math. Surveys, 40:3 (1985), 135–180 | DOI | MR | Zbl | Zbl
[18] P. L. Dordal, “Towers in $[\omega]^\omega$ and $\omega^\omega$”, Ann. Pure Appl. Logic, 45:3 (1989), 247–276 | DOI | MR | Zbl
[19] K. Kunen, Set theory. An introduction to independence proofs, Stud. Logic Found. Math., 102, North-Holland, Amsterdam, 1980 | MR | Zbl
[20] M. E. Rudin, “Martin's axiom”, Handbook of mathematical logic, North-Holland, Amsterdam–New York–Oxford, 1977, 491–501 | MR | Zbl
[21] D. A. Martin, R. M. Solovay, “Internal Cohen extensions”, Ann. Math. Logic, 2:2 (1970), 143–178 | DOI | MR | Zbl
[22] S. H. Hechler, “Independence results concerning a problem of N. Lusin”, Math. Systems Theory, 4:3 (1970), 316–321 | DOI | MR | Zbl
[23] S. H. Hechler, “On the existence of certain cofinal subsets of ${}^{\omega}\omega$”, Axiomatic set theory, Proc. Sympos. Pure Math. (Univ. California, Los Angeles, CA, 1967), Amer. Math. Soc., Providence, RI, 1974, 155–173 | MR | Zbl
[24] M. R. Burke, “A proof of Hechler's theorem on embedding $\aleph_1$-directed sets cofinally into $(\omega^\omega,^*)$”, Arch. Math. Logic, 36:6 (1997), 399–403 | DOI | MR | Zbl
[25] R. C. Solomon, “Families of sets and functions”, Czechoslovak Math. J., 27:4 (1977), 556–559 | MR | Zbl
[26] R. Solovay, “Introductory note to Gödel *1970a, *1970b, *1970c”, Collected works. Vol. III. Unpublished essays and lectures, Clarendon Press, Oxford Univ. Press, New York, 1995, 405–420 | MR | Zbl
[27] N. N. Luzin, Sobranie sochinenii, t. II. Deskriptivnaya teoriya mnozhestv, Izd-vo AN SSSR, M., 1958 | MR | Zbl